Tutorial for ARM

(inter) FPGA Intel FPGA Monitor Program

For Quartus Prime 16.1

1 Introduction

This tutorial presents an introduction to the Intel FPGA Monitor Program that can be used to compile, assemble,
download and debug programs for ARM® Cortex-A9 processor, which is a processor implemented as a hardware
block in Intel’s Cyclone® V SoC FPGA devices. The tutorial is intended for a user who wishes to use an ARM-based
system on an Intel Development and Education board. It gives step-by-step instructions that illustrate the features
of the Monitor Program. In addition to supporting the ARM-based programs, the Monitor Program can also be used
with the Nios II-based programs. For this application, consult the tutorial Intel FPGA Monitor Program for Nios I1.

The Monitor Program is a software application which runs on a host PC, and communicates with an ARM-based
hardware system on an FPGA board. It can be used to compile/assemble an ARM software application, download
the application onto the FPGA board, and then debug the running application. It provides features that allow the
user to:

* Set up an ARM project that specifies a desired hardware system and software program
* Download the hardware system onto an FPGA board

* Compile software programs, specified in assembly language or C, and download the resulting machine code
into the hardware system

* Display the machine code stored in memory

* Run the ARM processor, either continuously or by single-stepping instructions

* Examine and modify the contents of processor registers

* Examine and modify the contents of memory, as well as memory-mapped registers in I/O devices

* Set breakpoints that stop the execution of a program at a specified address, or when certain conditions are met

The process of downloading and debugging an ARM program requires an FPGA board that contains the ARM
hard processor system (HPS) hardware. In this tutorial it is assumed that the reader has access to the DE1-SoC
Development and Education board, connected to a computer that has Quartus Prime and Nios II Embedded Design
Suite (EDS) software installed. Although a reader who does not have access to an FPGA board will not be able to
execute the Monitor Program commands described in the tutorial, it should still be possible to follow the discussion.

Intel Corporation - FPGA University Program 1
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

1.1 Who should use the Monitor Program

The Monitor Program is intended to be used in an educational environment by professors and students. It is not
intended for commercial use.

2 Installing the Monitor Program

The Monitor Program is released as part of the University Program Design Suite (UPDS). Before the UPDS can be
installed on a computer, it is necessary to first install the Quartus Prime CAD software (either the Lite, Standard or
Pro Edition) and the Nios I Embedded Design Suite (EDS). A particular release of the Monitor Program can be used
only with a corresponding version of the Quartus Prime software and Nios II EDS. This software can be obtained
from the Download Center on Intel’s website at university.altera.com. To locate the software select DOWNLOADS
and then download the desired version.

Once the Quartus Prime software and Nios II EDS are installed, the UPDS can be installed.

Note that if the Quartus Prime software is re-installed at some future time, then it will be necessary to re-install the
Monitor Program at that time.

2.1 Using a Windows Operating System

When using a Windows operating system, perform the following:

1. Install the UPDS from the University Program section of Intel’s website. It can be found by going to
university.altera.comand choosing SUPPORT followed by Training and University Program. Then,
select software tools > Intel FPGA Monitor Program. Specify the installed version of Quartus Prime soft-
ware. Then click on the EXE item in the displayed table, which links to an installation program called al-
tera_upds_setup.exe. When prompted to Run or Save this file, select Run.

2. The first screen of the installer is shown in Figure 1. Click on the Next button.

3. The installer will display the License Agreement; if you accept the terms of this agreement, then click | Agree
to continue.

4. The installer now displays the root directory where the FPGA University Program Design Suite will be in-
stalled. Click Next.

5. The next screen, shown in Figure 2, lists the components that will be installed, which include the Monitor
Program software and University Program IP Cores. These IP Cores provide a number of I/O device circuits
that can be used in hardware systems to be implemented on the FPGA board.

6. The installer is now ready to begin copying files. Click Install to proceed and then click Next after the instal-
lation has been completed. If you answered Yes when prompted about placing a shortcut on your Windows

Desktop, then an icon Q is provided on the Desktop that can be used to start the Monitor Program.

2 Intel Corporation - FPGA University Program
November 2016

university.altera.com
https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

-
@ Altera University Program Design Suite Setup = =

Welcome to the Altera University
Program Design Suite Setup

This wizard will guide you through the installation of the
Altera University Program Design Suite v14.1. Please note
that you must have previously installed a version of Altera's
Quartus II software (version 14.1). The Altera Monitor
Program additionally requires the Altera's Nios II Embedded
Design Suite (version 14.1).

Next >][Cancel

Figure 1. Intel UPDS Setup Program.

@ Altera University Program Design Suite Setup ==

Choose Components

Choose which features of Altera University Program Design
Suite you want to install.

Check the components you want to install and uncheck the components you don't want to
install. Click Install to start the installation.

Select the type of install: [Full -
Or, select the optional Altera Monitor Program

components you wish to Computer Systems

install:

University Program IP Cores

Description
Space required: 348.2M8 Position your rmouse over a cormponent to see its
description.
MNullsoft Install System v2.46
< Back][Install J ’ Cancel
A J

Figure 2. The components that will be installed.

7. Now, the FPGA University ProgramDesign Suite is successfully installed on your computer, so click Finish
to finish the installation.

8. Should an error occur during the installation procedure, a pop-up window will suggest the appropriate action.
Possible errors include:

Intel Corporation - FPGA University Program 3
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

¢ Quartus Prime software is not installed or the Quartus Prime version is incorrect.

¢ Nios IT EDS software is not installed or the version is incorrect.

2.2 Using a Linux Operating System

When using a Linux operating system, perform the following:

1. Install the UPDS from the University Program section of Intel’s website. It can be found by going to
university.altera.comand choosing SUPPORT followed by Training and University Program. Then,
select software tools > Intel FPGA Monitor Program. Specify the installed version of Quartus Prime soft-
ware. Then click on the TAR item in the displayed table, which links to an installation tarball called al-
tera_upds_setup.tar. Save this file to a directory of your choosing.

2. Using a console, navigate to the directory to which the file was saved. Extract the contents of altera_upds_setup.tar
using the following command: tar -xf altera_upds_setup.tar.

3. Among the extracted files is a shell script named install_altera_upds which will be used to install the UPDS.
Ensure that the script is executable by using the following command: chmod +x install_altera_upds.

4. Run the installation script with superuser privileges by using the following command: sudo ./install_altera_upds.

5. Follow the instructions displayed by the script to complete the installation.

3 Main Features of the Monitor Program

Each ARM software application that is developed with the Monitor Program is called a project. The Monitor
Program works on one project at a time and keeps all information for that project in a single directory in the file
system. The first step is to create a directory to hold the project’s files. To store the design files for this tutorial, we
will use a directory named Monitor_Tutorial. The running example for this tutorial is a simple assembly-language
program that controls some lights on a DE1-SoC board.

If you are using a Windows operating system, then start the Monitor Program software either by double-clicking its
icon on the Windows Desktop or by accessing the program in the Windows Start menu under Intel > University
Program > Intel FPGA Monitor Program. You should see a display similar to the one in Figure 3.

If you are using a Linux operating system, then start the Monitor Program software by running the altera-monitor-
program shell script located in <path to Intel software>/University Program/Monitor Program/bin. You should see
a display similar to the one in Figure 3.

This display consists of several windows that provide access to all of the features of the Monitor Program, which the
user selects with the computer mouse. Most of the commands provided by the Monitor Program can be accessed by
using a set of menus that are located below the title bar. For example, in Figure 3 clicking the left mouse button on
the File command opens the menu shown in Figure 4. Clicking the left mouse button on the entry EXit exits from
the Monitor Program. In most cases, whenever the mouse is used to select something, the left button is used. Hence
we will not normally specify which button to press.

4 Intel Corporation - FPGA University Program
November 2016

university.altera.com
https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

Academic Monitor Program

Eile Edit Actions Windows Help

O R+B 24l 2pmi it
Project Files — | Editor — > | Registers = &

gVl

Editor | Disassembly / Breakpoints | Memory / Watches | Trace |

Terminal — | Info & Errors - X

Info & F.nors/ GDBSQWEI; Debug Valiahls/

Figure 3. The main Monitor Program display.

- Edit Actions Windows
M

Mew... Ctrl-N
Open... Crrl-C
Save Ctrl-S

Mew Project...
ﬁ Open Project...
Open Recent Project b
£} Edit Project
E Save Project

Exit

Figure 4. An example of the File menu.

For some commands it is necessary to access two or more menus in sequence. We use the convention Menu1 >
Menu2 > ltem to indicate that to select the desired command the user should first click the mouse button on Menu1,

Intel Corporation - FPGA University Program 5
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

then within this menu click on Menu2, and then within Menu?2 click on Item. For example, File > EXxit uses the
mouse to exit from the Monitor Program. Many commands can alternatively be invoked by clicking on an icon
displayed in the Monitor Program window. To see the command associated with an icon, position the mouse over

the icon and a tooltip will appear that displays the command name.

It is possible to modify the organization of the Monitor Program display in Figure 3 in many ways. Section 8 shows
how to move, resize, close, and open windows within the Monitor Program display.

3.1 Creating a Project

To start working on an ARM software application we first have to create a new project, as follows:

1. Select File > New Project to open the New Project Wizard, which leads to the screen in Figure 5. The Wizard
presents a sequence of screens for defining a new project. Each screen includes a number of dialogs, as well
as a message area at the bottom of the window. The message area is used to display error and information
messages associated with the dialogs in the window. Double-clicking the mouse on an error message moves
the cursor into the dialog box that contains the source of the error.

i New Project Wizard

sl

Project directony:

File Se‘d:ings"lSystem Se‘d:ing;\Prcgram Type \Prcgram Settings \Ccnnr:cticn Settings ‘\

Specify a project name and directory

| D:\Menitor_Tutorial

| | Browse... ‘

Project name:

|I\f10nitor_Tutona|

Architecture: | ARM Cortex-A9

Figure 5. Specifying the project directory and name.

In Figure 5 we have specified the file system directory D:\Monitor_Tutorial and the project name Moni-
tor_Tutorial. For simplicity, we have used a project name that matches the directory name, but this is not

Intel Corporation - FPGA University Program
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

required.

If the file system directory specified for the project does not already exist, a message will be displayed indicat-
ing that this new directory will be created. To select an existing directory by browsing through the file system,
click on the Browse button. Note that a given directory may contain at most one project.

The Monitor Program can be used with either an ARM-based system or a Nios II-based system. The choice
of a processor is made in the window in Figure 5 in the box labeled Architecture. We have chosen the ARM
Cortex-A9 architecture for this tutorial.

2. Click Next to advance to the window shown in Figure 6, which is used to specify a particular system. A
hardware system to be implemented on the FPGA board is usually generated by using Quartus’s Qsys tool.
Information about creating systems using Qsys can be found in the Introduction to the Intel Qsys System
Integration Tool tutorial, which is available in the University Program section of Intel’s website.

A system designed and generated by using Quartus Prime and its Qsys tool is described in SOPClInfo and
SOF files. The former gives a high-level description of the system. The latter represents the FPGA circuit that
implements the designed system; this file can be downloaded into the FPGA chip on the board that is being
used.

The drop-down list on the Select a system pane can be used to choose the system to be used in the project.
There are three possibilities: a prebuilt DE1-SoC Computer system, a custom system created by the user,
and a generic ARM Cortex-A9 System.

The Monitor Program includes a prebuilt computer system for the DE1-SoC boards, called the DE1-SoC
Computer, which includes a number of interfaces to input/output devices implemented in the FPGA fabric of
the chip. This computer was created using Quartus Prime and its Qsys tool. It is represented by .sopcinfo and
.sof files which are automatically included when this computer is selected.

If a custom system is selected, then the user must manually specify the .sopcinfo and .sof files that define the
required system in the System details pane.

The third option is to use the generic ARM Cortex-A9 system. In this case no design files are used, and only
the resources that are directly associated with the HPS part of the FPGA device are available. For example,
application programs that do not involve resources implemented in the FPGA fabric can be run using this
system.

For this tutorial we have chosen DE1-SoC Computer, as depicted in Figure 6. In the top right corner of
the screen there is a Documentation button. Clicking on this button opens a user guide that provides all
information needed for developing ARM programs for the DE1-SoC Computer, such as the memory map for
addressing all of the I/O devices in the system. This file can also be accessed at a later time by using the
command Settings > System Settings and then clicking on the Documentation button.

Intel Corporation - FPGA University Program 7
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM

For Quartus Prime 16.1

[i New Project Wizard @1
File Settings = System Se’fting;\,I Pragram Type \ Program Settings \ Connection Settings \\
Specify a system
- Select a system
”DE[-SOC Computer '” ‘ Documentation

This system, called the DEL-50C Computer, is intended to be used as a platform for experiments in
computer organization and embedded systems. To suppert these experiments, the system contains a

number of compenents: a processor, memery, audic and video devices, and some simple 'O
peripherals.

r System details
System description file (SOPCInfo):

‘-fCornputer_SystemstF_'l—SOC«"DEI.—SoC_Computerfven|ongomputer_System.sopcinfo| | Browse |

FPGA programming (SOF) file:

‘--fCornputer_Systemi«‘DEl-SoCr'DEL-SoC_Computerf\reriIongEL_SoC_Cornputer.;of | | Browse |

The 50F file represents the FPGA programming file for the hardware system. If it is specified here,
then the Manitor Program can be used to downlead this programming file onto the board.
Otherwise, the system will need to be downloaded using some other methed (for example, by
using Quartus II).

|<Eack||ﬂa¢>|| Finish ||§ance||

Figure 6. Specifying the desired hardware system.

3. Click Next to advance to the screen in Figure 7, which is used to specify the program source files that are
associated with the project. The Program Type drop-down list can be used to select one of the following

program types:

ELF or SREC format.

Assembly Program: allows the Monitor Program to be used with ARM assembly-language code.
C Program: allows the Monitor Program to be used with C code.

AXF, ELF or SREC File: allows the Monitor Program to be used with a precompiled program, in AXF,

» No Program: allows the Monitor Program to connect to the ARM hardware system without first loading

a program; this can be useful if one wants to examine the current state of some I/O devices without
running an actual program.

For our example, set the program type to Assembly Program. When the DE1-SoC computer has been
selected for the project, it is possible to click on the selection Include a sample program with the project.
As illustrated in Figure 7, several sample assembly-language programs are available for this prebuilt computer.
For our tutorial select the program named simple_program. This is a very simple program which continuously

reads the state of the slider switches on the DE1-Soc board and displays their state on the red LEDs. The
source code for the program is:

Intel Corporation - FPGA University Program

November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM

.text
.equ
.equ
.global
_start:

LOOP:

.end

-
i New Project Wizard

==

Specify a program type

File Seﬁlng;\System Seﬁlng;‘ Program '|')"f:.le\|I Program Settlngs\ Connection Settmg;\\ Memory Settmg;\

Program Type: |Assembly Program

Lets you specify a program written in assembly language.

Ilnclude a sample program with the projecﬂ

- Select a sample prog

Simple Program
Getting Started
JTAG UART

This pregram demonstrates the use of parallel ports. E

Interrupt Example

Arm A9 Generic Interrupt Conty
Arm A9 Timer Example

It displays the SW switch values on the LEDs

[< Back| | Nest> | | Finish | [cancel |

Figure 7. Selecting a program type and sample program.

LEDs, OxFF200000

SWITCHES, OxFF200040

_start

LDR R1, =LEDs /%
LDR R2, =SWITCHES / *
LDR R3, [R2] /
STR R3, [R1] /%
B LOOP

Click Next to advance to the screen in Figure 8.

Intel Corporation - FPGA University Program

November 2016

Address

For Quartus Prime 16.1

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

10

- \
< New Project Wizard [= |

File Seﬁlng;\System Seﬁlng;\ Program Type\ Program Settings\ Connection Settmg;\\ Memory Settmg;\
Specify program details

- Source files
First source file is used to determine the name of the binary program file.

D:/Menitor_Tuterial/simple_program.s Add...

Remove

Down

" Program optii
|

Start symbol: | _start

Source files highlighted in blue are sample program files, which will be created in the project directory.

| < Back | | Next = | | Finish | | Cancel |

Figure 8. Specifying source code files.

When a sample program has been selected, the source code file(s) associated with this program is listed in
the Source files box. In this case, the source file is named simple_program.s; this file will be copied into the
directory used for the project by the Monitor Program. If a sample program is not used, then it is necessary to
click the Add button and browse to select the desired source file(s).

Figure 8 shows that the first instruction is indicated by the label _start. In the ARM architecture this is not
editable.

. Click Next to advance to the window in Figure 9. This window is used to specify the connection to the FPGA

board, the processor that should be used (some hardware systems may contain multiple processors), and the
terminal device. The Host connection drop-down list contains the physical connection links (such as cables)
that exist between the host computer and any FPGA boards connected to it. The ARM processors available
in the system are found in the Processor drop-down list, and all terminal devices connected to the selected
processor are displayed in the Terminal device drop-down list. We discuss terminal devices in Section 5.

Accept the default choices that are displayed in Figure 9. If the Host Connection box is blank, make sure that
the DE1-SoC board is connected to the host by a USB cable and that its power is turned on. Then, press the
Refresh button and select the USB Blaster as the desired choice. For the DE1-SoC board the required choice
is DE-SoC.

. Click Next to reach the final screen for creating the new project, shown in Figure 10. This screen is used to

specify memory settings that are needed for compiling and linking the program.

Intel Corporation - FPGA University Program
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

3.2

r 1
5 New Project Wizard @

File Seﬁlng;\System Seﬁlng;\ Program Type\ Program Settings ~ Connection Settings\l Memory Settmg;\

Specify system parameters

System parameters
Host connectlon:|USB-B\a;ter [USB-0] '| | Refresh |

Processon: |ARM_A9_HPS_arm_a9_U '|

[Dont reset the processor when loading a program (ARM only)

Terminal device: [[TAG_UART for ARMLO -

| < Back | | Next = | | Finish | | Cancel |

Figure 9. Specifying system settings.

There are two modes that can be selected. In the Basic mode, which does not provide explicitly for the use
of interrupts, the application program starts at memory address 0x00000000 as shown in the figure. A more
general alternative is to use the Interrupts mode. In this case, a .vectors section occupies the memory locations
0x00000000 to 0x0000003F, as described in Section 7. This space is used for interrupt and exception vectors.
The main program in the .fext section may start at address 0x00000040. However, it can also start at some
other address, as may be specified by the user. To change the address, double-click on the .fext entry and
change the address in the pop-up box that appears.

Click Finish to complete the creation of the new project. At this point, the Monitor Program displays the
prompt shown in Figure 11. Clicking Yes instructs the Monitor Program to download the hardware system
associated with the project onto the FPGA board. It is also possible to download the system at a later time
by using the Monitor Program command Actions > Download System. If the downloaded system contains
more than one processor, the Monitor Program will prompt you to halt the processors other than the one being
used for the current project. It is generally recommended to halt the other processors because they can execute
without you knowing, resulting in unexpected behavior.

Compiling and Loading the Program

After successfully creating a project, its software files can be compiled/assembled and downloaded onto the FPGA
board using the following commands:

Intel Corporation - FPGA University Program 11
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

IS 3
< New Project Wizard =
File Seﬁlng;\System Seﬁlng;\ Program Type\ Program Settlngs\ Connection Settmg;\ Memaory 5E1:tiﬂgs\,I
Specify program memory settings
- Memory opti
Here you can specify section names and their start and end addresses. These sections will be used
by the linker to place code and data at the specified addresses. To ensure correct use of the section
names by the linker, the names must match those identified by the assembler directives, such as
et
Linker Section Presets: |Ba;ic v|
Section Name | Memeory Device Address Range |
.text ARM DDR3_SDRAM 0x00000000 - O0x3FFFFFFF
< Back | | Mext = I Finish I Cancel
. 4
Figure 10. Specifying memory settings.
Download System - Prompt X

2 | Would you like to download the system associated with this project onto the board?
: If so, make sure that the board is connected via the correct cable and is powered up.

[Yes]| N |

Figure 11. Download the hardware system.

* Actions > Compile menu item or 819 jcon: compiles the source files into an AXF and SREC file. Build
warnings and errors will show up in the Info & Errors window. The generated AXF and SREC files are placed
in the project’s directory.

* Actions > Load menu item or ¥ icon: loads the compiled SREC file onto the board and begins a debugging
session in the Monitor Program. Loading progress messages are displayed in the Info & Errors window.

 Actions > Compile & Load menu item or &4 con: performs the operations of both compilation and loading.

Our example project has not yet been compiled, so it cannot be loaded (the Load option is disabled). Select the Ac-

12 Intel Corporation - FPGA University Program
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

tions > Compile & Load menu item or click the 40 icon to begin the compilation and loading process. Throughout
the process, messages are displayed in the Info & Errors window. The messages should resemble those shown in
Figure 12.

Info & Errors =

Connection established to GDB server at localhost:2646

arm-altera-eabi-nm -p "D:/Monitor Tutorial/simple program.axf™
Symbols loaded.
arm-altera-eabi-ocbjdump -d -5 "-M reg-names-std”™ "D:/Monitor_Tutorial/simple program.axf” | tee

"D:/Monitor Tutorial/simple program.axf.ocbjdump”
Source code loaded.

gy

Figure 12. Compilation and loading messages.

After successfully completing this step, the Monitor Program display should look similar to Figure 13. At this point
the processor is halted at the first instruction of the program that has to be executed, which is highlighted in yellow
shading. The main part of the display in Figure 13 is called the Disassembly window. It shows the machine code for
the assembled program, as well as the addresses of memory locations in which the instructions are loaded. It also
shows the assembly-language version of the assembled instructions.

Most instructions in an ARM assembly-language source program are assembled into directly-corresponding machine
instructions in the object code that is loaded into the memory for execution. However, this is not the case with all
instructions. The ARM assembly language provides numerous pseudo-instructions, which are often replaced by
actual instructions that look quite different but have the same effect when executed. For instance, the instruction

LDR RI1, =LEDs

loads into processor register R1 the memory address of the I/O data register that is connected to the LEDs on the
board. As seen in Figure 13, this instruction is replaced with the instruction

LDR RI1, [PC, #12]

in the assembled code. Since Load instructions in the ARM processor cannot specify an immediate operand that is
32 bits long, the address O0xFF200000 is placed in the literal pool after the last instruction in the program. Then, the
implemented LDR instruction uses the Relative addressing mode (which is the Offset addressing mode that uses the
Program Counter as the base register) to access the desired address value. Observe that the offset used in this case
is 12 bytes. The reason is that the ARM processor prefetches two instructions to facilitate pipelined execution of
the program. When an instruction is prefetched, the Program Counter is incremented by four. Thus, in our example,
the updated PC contents will be 0x08 when the first LDR instruction is being executed. Then, the offset of 12 bytes
leads to the memory location 0x14.

Intel Corporation - FPGA University Program 13
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

Intel FPGA Monitor Program - Monitor_Tutorial : simple_program.srec [Paused]

File Edit Actions Windows Help

O He+EH Hbhd 20wk PP

Project Files — X | Disassembly — X | Registers - X
B wontor Ttoral P R Ve |
L[] simple_program.s — |l [pc 0x00000000
ll[za OXFFFFFFFE
-1 OxFFFF133C
.include "address_map_arm.s" =z 0%00000001
=3 OxFFFEFCO0
Ltext 4 OxFFFFECO0
Lglobal start =5 OxFFFF4AES
_stare: -6 0%00000074
LIR Rl, =LEDR BASE /™ Address of red LEDs. 7 O=FFFFROLL
j— -z OxFFFFSE22
0x00000000 lar r1, [pc, #12] : 14 <ICCEOIR+0xd> rin ;“i;;g;g;i
= = x
- N i
DR RZ, =SW_BASE /% hddress of switches. 5 FFD0S000
0x00000004 lar r2, [pc, #12] : 18 <ICCEOIR+0x8> o 0X0000001C
B3 OxFFFFEBFQ
LOoP: LDR R3, [RZ] /% Read the state of swit| [[|1. OxFEFF1358)
LOOF: cpsr 0x200001D3
0x00000008 lar r3, [r2]
STR R3, [R1] /% Display the state on L
0x0000000C str r3, [r1]
B LooF
0x00000010 b8 <LOOP: —
»
Editor , Disassembly | Breakpoints | Memory | Watches | Trace

Terminal — X | Info & Errors

JTAG UART link established using cable "DE-SoC [USB-1]", device 2,
instance 0x02

INFO: Non-memory — ARM A9 HPS dcan0 OX££c00000
INFO: Non-memory - ARM AS_HPS_dcanl OX££c01000
INFO: Non-memory — ARM A9 HPS l3regs 0x££800000
INFO: Non-memory - ARM AS_HES_sdretl 0xf£c25000
INFO: Non-memory — ARM A9 HPS timer Oxfffec600
INFO: Non-memory - ARM_AS_HES_scu Oxfffec000

Info & Errors | GDB Server | Debug ; Variables

Figure 13. The Monitor Program window after loading the program.

Note that in an ARM assembly-language program it is possible to use both upper- and lower-case letters to denote
register names and instruction mnemonics.

Information about the ARM instructions, addressing modes and literal pools can be found in the tutorial Introduction
to the ARM Processor Using Intel Toolchain, which is available in the University Program section of Intel’s website.

3.2.1 Compilation Errors

During the process of developing software, it is likely that compilation errors will be encountered. Error messages
from the ARM assembler or from the C compiler are displayed in the Info & Errors window. To see an example of a
compiler error message, edit the file simple_program.s, which is in the project’s directory, and replace the mnemonic
STR with ST. Recompile the project to see the error shown in Figure 14. The error message indicates the type of
error and it gives the line number in the file where the error was detected. Fix the error, and then compile and load
the program again.

3.3 Running the Program

As mentioned in the previous section, the processor is halted at the first instruction after the program has been loaded.

To run the program, select the Actions > Continue menu item or click the O icon. The simple_program displays
the current values of DE1-SoC board’s slider switches on the red LEDs. The Continue command runs the program

14 Intel Corporation - FPGA University Program
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM

For Quartus Prime 16.1

Info & Errors

Compiling scurce files...

arm-altera-eabi-as -mfloat-abi=scft -march=armv7-a -mcpu=cortex-a% --gstabs -I
D:/Monitor Tutorial/simple_program.s:10: Error: bad instruction “st R3, [R1]'
Compilation stopped.

Info & Errors .' GDB Server .'

— X
=
"$GNU_ARM _TOOL_ROOTDIR/arm-a
[

Figure 14. An example of a compiler error message.

indefinitely. To force the program to halt, select the Actions > Stop command, or click the 1 icon. This command
causes the processor to halt at the instruction to be executed next, and returns control to the Monitor Program.

Figure 15 shows an example of what the display may look like when the program is halted by using the Stop
command. The display highlights in yellow the next program instruction to be executed, which is at address
0x0000000¢C, and highlights in red the values in the processor registers that have changed since the last pro-
gram stoppage. Other screens in the Monitor Program are also updated, which will be described in later parts of this

tutorial.

Intel FPGA Menitor Program - Monitor_Tutorial : simple_program.srec [Paused]

File Edit Actions Windows Help
B wed AL 2000k P
Project Files — X | Disassembly — % | Registers - %
5 Monitor Ttora cotn mtracion| Addhes) orymbotame | |Las] _Reg | e |
------ [simple_program.s pc
2 |z0
r1
.include “address map arm.s” r2
r3]
L text 4 OXFFFFECO0
.glohal _stare rs OXFFFF4REL
stare: 6 0x00000076
LDR Rl, -LEDR_BASE /* hddress of red LEDs. =7 OxEFFFFO14
— e OXFFFFSE28
0x00000000 T55TLOOC 1dr r1, [pc, #12] ; 14 <ICCEOIR+0xd> ‘fu g"g‘ggggggz
x 2
- = -
LDR RZ, =3W BASE /% hddress of switches. it ORFED02000
0x00000004 T5STZO0C ldr r2, [pc, #12] ; 18 <ICCEOIR+0xG> 12 x0000001C]
sp OXFFFFEBEQ
LOOP: LDR R3, [RzZ] /% Read the state of swit| [|/7- OxFFFF1358)
Loop: cpar 0x200001D3
0x00000008 £5523000 ar r3, [r2]
STR B3, [RL] /% Display the state on L
0x0000000C £5013000 str 13, [rl]
B LOoP
0x00000010 TAFTFTFD b 8 <LODP> =
»
Editor , Di Breakpoints | Memory | Watches | Trace
Terminal > | Info & Errors - X
JTAG URRT link established using cable "DE-SoC [USB-1]", device 2, : Non-memory - ARM_AS HPS dcanl 0xff£c01000
instance 0x02 : Non-memory - ARM_AS HPS l3regs 0xff800000
: Non-memory - ARM_AS_HPS_sdretl 0xffc25000
: Non-memory - ARM_AS HPS timer Oxfifec€00
: Non-memory - ARM_AS_HPS_scu Oxfffec0o
Info & Errors /| GDB Server | Debug ; Variables

Figure 15. The Monitor Program display after the program has been stopped.

Intel Corporation - FPGA University Program
November 2016

15

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

3.4 Using the Disassembly Window

In Figure 15, the Disassembly window shows the machine instructions for our program. The leftmost column in
the window gives the memory addresses, the middle column displays the machine code at these addresses, and the
rightmost column shows the corresponding assembly-language instructions.

The Disassembly window can be configured to display less information on the screen, such as not showing the
assembly-language instructions or not showing the machine encoding of the instructions. These choices can be made
by right-clicking on the Disassembly window and selecting the appropriate menu item, as indicated in Figure 16.

LOOP:

000000005 lar 3, [k2]) _ i
TR 3, [R1] Show instruction words

0x0000000C str r3, [r1]
B Loop

0x00000010 b 8 <LODE : :

* Goto instruction...
Ox00000014 vword 0xff£200000
000000018 vword 0xf£200040

Figure 16. Display options for the Disassembly window.

Different parts of memory can be displayed by scrolling, using either the vertical scrollbar on the right side of the
Disassembly window or a mouse scroll wheel. It is also possible to go to a different region of memory by using
the Goto instruction panel at the top of the Disassembly window, or by using the command Actions > Goto
instruction. The instruction address provided for the Goto command must be a multiple of four, because ARM
instructions are word-aligned.

3.5 Single Stepping Through Program Instructions

When debugging a program, it is often very useful to be able to single step through the program and observe the
effect of executing each instruction. The Monitor Program has the ability to perform single-step operations. Each
single step consists of executing a single machine instruction and then returning control to the Monitor Program. If
the source code of the program being debugged is written in the C language, then each individual single step will
still correspond to one assembly-language (machine) instruction generated from the C code.

The single-step operation is invoked by selecting the Actions > Single step menu item or by clicking on the i
icon. The instruction that is executed by the processor is the one highlighted in yellow in the Disassembly window.
Consider our simple_program example. You can go to the first instruction of the program, which has the label _start,

by selecting Actions > Restart menu item or by clicking the “F icon. If the program is running, it must first be
halted before the restart command can be performed. The restart command loads into the Program Counter the
address of the first instruction, thus causing the execution to start at this point in the program. Now, single step
through the program and observe the displayed changes. Note that the register values are indicated in red when they
change as a result of executing the last instruction.

3.6 Using Breakpoints

An instruction breakpoint provides a means of stopping the execution of a program when it reaches an instruction at
a specific address. The procedure for setting a breakpoint is:

16 Intel Corporation - FPGA University Program
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

Intel FPGA Monitor Program - Monitor_Tutorial : simple_program.srec [Paused]

File Edit Actions Windows Help

O He+EH Hbhd 20wk PP

Project Files — X | Disassembly — % | Registers - x
(& Manitor Tutorial Goto instruction| Address (hex) or symbol name: |:| _ Reg | Velue |
L[] simple_program.s — |l [pc 0x0! 0o
alllzo 0xFFFFFFER
Ltext rl
.global _start r2
_start: r3
LDR R, -LEDR_BASE /* Address of red LEDs. 4 o E
otazts 5 0xFFFF4AEL
0x00000000 1dr rl, [pc, #12] : 14 <TCCEOTR+0xd> ré 0x00000076
LDR R2, =3W BASE /% hddress of switches. 7| |27 O=FFFFROLL
x00000004 1ar r2, [pc, H12] : 18 <ICCEOIR+08> e O=FFFESE2S
9 0%00000005
LOOF: 1DR R3, [R2] /% Read the state of switlod ig ;:iigg;g;g
Loor: r12 0x0000001C
0%00000008 dr 3, [r2] - ———
STR B3, [R1] /% Display the state on I ||l1, U=FFFF1A5H
0x0000000C str 13, [ri] cpar D%20000103
E Loop
@x00000010 b 8 <L00P>
0x00000014 word 0xE£200000
0%00000018 ord 0xE£200040
0x0000001C »2 =
»
Editor , Disassembly | Breakpoints | Memory | Watches | Trace

Terminal — X | Info & Errors

JTAG UART link established using cable "DE-SoC [USB-1]", device 2,
instance 0x02

INFO: Non-memery - ARM A9 HPS dcanl 0x££c01000
INFO: Non-memory - ARM A8 _HPS_l3regs 0xff800000
INFO: Non-memery - ARM A9 HPS sdrctl 0x££c25000
INFO: Non-memory - ARM AS HPS_timer Oxfffec600
INFO: Non-memeory - ARM A9 HPS scu Oxfifec000

Info & Errors | GDB Server | Debug ; Variables

Figure 17. Setting a breakpoint.

1. In the Disassembly window, scroll to display the instruction that will have the breakpoint. For example, in the
window in Figure 15 scroll to the Branch instruction at address 0x00000010.

2. Click on the gray bar to the left of the address 00000010. As illustrated in Figure 17, the Monitor Program
displays a red dot next to the address to show that a breakpoint has been set. Clicking the same location again
removes the breakpoint.

Once the instruction breakpoint has been set, run the program. The breakpoint will trigger when the Program Counter
value equals 0x00000010. Control then returns to the Monitor Program, and the Disassembly window highlights
in a yellow color the instruction at the breakpoint. A corresponding message is shown in the Info & Errors pane.

3.7 Examining and Changing Register Values

The Registers window on the right-hand side of the Monitor Program display shows the values of processor regis-
ters. It also allows the user to edit most of the register values. The number format in which the register values are
displayed can be changed by right-clicking in the Registers window and selecting the desired format, as illustrated
in Figure 18.

Each time program execution is halted, the Monitor Program updates the register values and highlights any changes
in red. The user can edit the register values while the program is halted. Any edits made are visible to the processor
when the program’s execution is resumed.

Intel Corporation - FPGA University Program 17
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

Registers — X

Reg Value

Binary
Qctal

Decimal

D=

Signed representation
T

Figure 18. Setting the number format for displaying register values.

As an example of editing a register value, set the slider switches on the DE1-SoC board to some pattern of Os and
1s. Run the simple_program and observe that the LEDs display the selected pattern. Next, stop the execution of
the program and set a breakpoint at the Store instruction at address 0x0000000C. Run the program and after the
execution stops at the breakpoint, observe that the value in register R3 corresponds to the current setting of the slider
switches. Now, as indicated in Figure 19, double-click on the contents of register R3 and change them to the value
FFF. Press Enter on the computer keyboard, or click away from the register value to apply the edit. Then, single-step
the program to see that all LEDs will be turned on.

Disassembly — X | Registers - X
Goto instruction| Address (hex) or symbol name: | Go Reg | Value
LOOF: -
000000008 ldr r3, [x2]
5TR E3, [R1l] /% Display the state on LEDs. */
000000000 str r3, [r1]
E LOOP
000000010 b § <LOOP: r5 0x01000040
0x00000014 ord 0x££200000 ré 0x00000078
0x00000018 word OxE£200040 =7 OxFFFFFOLL

Figure 19. Editing a register value.

3.8 Examining and Changing Memory Contents

The Memory window, depicted in Figure 20, displays the contents of the system’s memory space and allows the
user to edit memory values. The leftmost column in the window gives a memory address, and the numbers at the
top of the window represent hexadecimal address offsets from that corresponding address. For example, referring
to Figure 20, the address of the third word in the second row is 0x00000010 + 0x8 = 0x00000018. The
displayed contents of this memory location are FF200040, which is the address of the slider switches that is placed
into the literal pool when the pseudo-instruction

LDR R2,=SWITCHES

is assembled.

18 Intel Corporation - FPGA University Program
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM

For Quartus Prime 16.1

Intel FPGA Monitor Program - Monitor_Tutorial : simple_program.srec [Paused]

File Edit Actions Windows Help
8 meE HPhd 00k
Project Files — X | Memory — X | Registers - X
it | om0 v]]|t e
L[] simple_program.s | [pc 0x0! 0o
ll[za OXFFFFFFFE
0x00000000 ESOFLOOC ESOFZ00C ES923000 ES813000 r1
0x00000010 EAFFFFFC FF200000 FF200040 00000000 =z
0x00000020 000000D0 ODOODDOO DOODDO30 00000000 =3
0x00000030 55555555 55555555 55555555 55555555 =4 o £C
0x00000040 EFFEFDEl ALFEDSEF E3DABSZE EZEEFEAD S OxFFFFAAEL
0x00000050 ~ FEOFEB3S EDEESEE3 772BSABA JEEAOSTE ré 000000076
0x00000060 F4FEE9SD 33EEELOS 6063EQSF 533DECDE =7 OxFFFFRO14
0x00000070 FF4EB2A4 FE91BASS EFZBAGCS FRSEADFA = O%FFFTSE2E
0x00000080 EFFDBEFC C5707FCA SEEDE3SC AFDELGFT Sn ;:ig;zfg;g
0x00000030 23035476 GFALDB74 EDF55513 FZABE77S - FFD0S000
0x000000A0 SECFFEFS EFDEBETE SFIDF7SC FSBFSFIC o 0X0000001C
0x000000B0 CBABFFF? DSDEB7C7 DEDAGSZD 9042228F = pi—
0x000000CO EESES3AZ EDDAZSEL SEALDTEF CSSTF75T e OxFEFF1358)
0x000000D0 7E1AB13C 1IEDC2D7 SFFES656 EBADETBA cpar 0%20000103
0x00000UED OFEDE7SF 6459379F F76DETT7 36EFECAD
0x000000F0 65DAG736 7F94D7FE 3FSECET? 3FED3C56
0x00000100 FOEDFCEC — F3S9BC5Z EBFCOLES GFCETBYE
0x00000110 C777BSBD 6F37ECCD EGDSBEBE FZFAFFAS
0x00000120 BAFATSAF BACEEFOZ AEAREES3 FEEEDAEE —
Kl [
Editor | Disassembly | Breakpoints , Memory | Watches | Trace |
Terminal — % | Info & Errors - X
JTAG UART link established using cable "DE-SoC [USB-1]", device 2,): Non-memory - ARM A9 HPS dcanl Ox£f
instance 0x02): Non-memory - ARM_AS_HPS_l3regs 0
): Non-memory - ARM_AS_HPS sdretl O
): Non-memory - ARM_AG_HPS_timer 0
Non-memory - ARM AS_HPS scu 0
Info & Errors /| GDB Server | Debug | Variables

Figure 20. The Memory window.

If a program is running, the data values displayed in the Memory window are not updated. When the program is
stopped, the data can be updated by pressing the Refresh button. By default, the Memory window shows only
the contents of memory devices, and does not display any values from memory-mapped I/O devices. To cause the
window to display memory-mapped I/O locations, click on the check mark beside Query Devices, and then click
Refresh. For example, set the slider switches to some pattern and press Refresh. Figure 21 shows the display we
obtained when choosing the pattern 0x30F.

Memory

Goto address (hex or symbol name):

- X
FFZEIEIMCI” §u| Query Devices

0xFFZ00040 ooooo3EoF aoooooao ooooaaon aooooaoa
0xFFZ00050 oooooaoa aoooooao ooooaaon aooooaoa
OxFFZ000a0 FFFFFFFF aoooooao ooooaaon aooooaoa

Figure 21. Displaying the I/O locations.

The color of a memory word displayed depends on whether that location corresponds to an actual memory device, a
memory-mapped I/O device, or is not mapped at all in the system. A memory location that corresponds to a memory
device will be colored black, as in Figure 20. Memory-mapped 1/O is shown in blue color, and a non-mapped address
is shown in grey. If a memory location changed value since it was previously displayed, then that memory location

Intel Corporation - FPGA University Program 19

November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

is shown in a red color, as in Figure 21.

Similar to the Disassembly window, it is possible to view different memory regions by scrolling using the vertical
scroll bar on the right, or by using a mouse scroll wheel. There is also a Goto address panel, which is analogous to
the Goto instruction panel discussed in Section 3.4. Note that in Figure 21 we reached the I/O device by typing the
address FF200040 in this panel.

As an example of editing a memory value, go to address FF200000 which is the address of LEDs. Double-click on
the memory word at this address and type the data value FFF. Press Enter on the computer keyboard, or click away
from the memory word to apply the edit. This should cause all LEDs to be turned on.

When accessing an I/O device, some reads may be destructive. Namely, after some register in the I/O interface is
read, its contents may no longer be valid. Therefore, it is not appropriate to read all I/O registers when refreshing
the information in the Memory window. Instead, it is prudent to read only the registers that are of specific interest.
This can be accomplished by left-clicking on the address of interest, then right-clicking and then selecting Read
Selected Address Range to update the displayed contents. Several consecutive addresses can be selected by
clicking on the first address and dragging across the other addresses.

It is possible to change the appearance of the Memory window in a number of ways, such as displaying data as
bytes, half-words or words. The Memory window provides additional features that are described in more detail in
Appendix A of this tutorial.

4 Working with Project Files

Project files store the settings for a particular project, such as the specification of a hardware system and program
source files. A project file, which has the filename extension .amp, is stored into a project’s directory when the
project is created.

The Monitor Program provides the following commands, under the File menu, for working with project files:

1. New Project: Presents a series of screens that are used to create a new project.
2. Open Project: Displays a dialog to select an existing project file and loads the project.

3. Open Recent Project: Displays the five most recently used project files, and allows these projects to be
reopened.

4. Save Project: Saves the current project’s settings after they have been modified by using the Settings com-
mand.

4.1 Modifying the Settings of an Existing Project

After a project has been created, it is possible to modify many of its settings, if needed. This can be done by clicking

on the menu item Settings > System Settings in the Monitor Program, or the H icon. This action will display
the existing system settings for the project, and allow them to be changed. Similarly, the program settings for the

20 Intel Corporation - FPGA University Program
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

project can be displayed and modified by using the command Settings > Program Settings, or the icon. To
change these settings, the Monitor Program has to first be disconnected from the system being debugged. This can

be done by using the command Actions > Disconnect, or clicking the &t icon.

5 Using the Terminal Window

This section of the tutorial demonstrates the functionality of the Monitor Program’s Terminal window, which sup-
ports text-based input and output. For this example, create a new Monitor Program project, called Monitor_Terminal.
When creating the project, follow the same steps shown for the Monitor_Tutorial project, which were described in
Section 3.1. For the screen shown in Figure 7 set the program type to Assembly Program, and select the sam-
ple program named JTAG UART. The source code file that will be displayed in the screen of Figure 13 is called
JTAG_UART:s. It communicates using memory-mapped I/O with the JTAG UART in the DE1-SoC Computer that
is selected as the Terminal device in the screen of Figure 9.

Compile, load and run the program. The Monitor Program window should appear as shown in Figure 22. Click the
mouse inside the Terminal window. Now, any characters typed on the computer keyboard are sent by the Monitor
Program to the JTAG UART. These characters are shown in the Terminal window as they are typed, because the
JTAG_UART. s program echos the characters back to the Terminal window.

+ Intel FPGA Monitor Program - JTAG_UART : JTAG_UART srec [Running]

File Edit Actions Windows Help
B weE Pdhd 200G P
Project Files — X | Disassembly — % | Registers - %
5 Monior Ttora cotn mtracion| Addhes) orymbotame | |Las] _Reg | e
------ [JTAG_UARTs pc 0x00000000
Al =0 OxEFEFEFEE
=1 OxEFEF139C
=2 0x00000001
Ltext o[22 OxEFEEFCO0
.glebal _start =4 OxEFEFECO0
_stare: =5 OxFFEF4RES
/% set up stack pointer %/ =€ 0x0000007€
Mo $P, $DDR_END - 3 /7 highest o || (7 OxEFFFFO14
e— e OxFFEFSE22
000000000 mm sp, #-1073741821 : 0xc0000003 =2 0x00000005
=10 0xEFD02000
=11 0xEFD02000
/% print a rext string &7 12 0%0000001C]
LDR R4, =TEXT_STRING o p——
0%00000004 dr 14, [pc, H128] ; Bc <TEXT STRING+0xic> s U=FEFE135H
cpsr 0%20000103
LOOF:
LDRE RO, [R4]
LOOF:
0x00000008 larh r0, [x4]
cne Ra, #0 =
m} Disassembly | Breakpoints | Memory | Watches | Trace
Terminal — X | Info & Errors - X
JTAG UART link established using cable "DE-3¢C [USB-1]", device 2, INFO: Non-memory - ARM_AS_HFS dcand 0x££c00000
instance 0x02 INFO: Non-memory - ARM_AS_HPS_dcanl 0x££c01000
INFO: Non-memory - ARM_AS_HPFS_l3regs 0x££200000
JTAG UART example code INFO: Non-memory - ARM _AS_HPS_sdrctl 0xffc25000
> INFO: Non-memory - ARM_AS_HPS_timer Oxfffece00

INFO: Non-memeory - ARM A9 HPS scu Oxfifec000

Info & Errors /| GDB Server | Debug ; Variables

Figure 22. Using the Terminal window.

Intel Corporation - FPGA University Program 21
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

The Terminal window supports a subset of the control character commands used for a de facto standard terminal,
called the VT'100. The supported commands are listed in Table 1. In this table <ESC> represents the ASCII character
with the code 0x1B.

Character Sequence | Description

<ESC>[2J Erases everything in the Terminal window

<ESC>[7h Enable line wrap mode

<ESC>[71 Disable line wrap mode

<ESC>[#A Move cursor up by # rows or by one row if # is not specified

<ESC>[#B Move cursor down by # rows or by one row if # is not specified

<ESC> [#C Move cursor right by # columns or by one column if # is not spec-
ified

<ESC>[#D Move cursor left by # columns or by one column if # is not speci-
fied

<ESC> [#1;#2f Move the cursor to row #; and column #5

<ESC>[H Move the cursor to the home position (row 0 and column 0)

<ESC>[s Save the current cursor position

<ESC>[u Restore the cursor to the previously saved position

<ESC>[7 Same as <ESC> [s

<ESC>[8 Same as <ESC> [u

<ESC>[K Erase from current cursor position to the end of the line

<ESC>[1K Erase from current cursor position to the start of the line

<ESC>[2K Erase entire line

<ESC>[J Erase from current line to the bottom of the screen

<ESC>[1J Erase from current cursor position to the top of the screen

<ESC>[6n Queries the cursor position. A reply is sent back in the format

<ESC> [#;; #2R, corresponding to row #; and column #,.

Table 1. VT100 commands supported by the Terminal window.

In addition to the JTAG_UART, there exists another option for the terminal device. In Figure 9, in the Terminal
device dropdown menu there is also a Semihosting option that is useful when C programs are used, as explained
in the next section.

22 Intel Corporation - FPGA University Program
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

6 Using C Programs

C programs are used with the Monitor Program in a similar way as assembly-language programs. To see an example
of a C program, create a new Monitor Program project called Monitor_Terminal_C. Use the same settings as for the
Monitor_Terminal example, but set the program type for this project to C Program. Select the C sample program
called JTAG UART. As illustrated in Figure 23, this program includes a C source file named JTAG_UART.c; it has
the same functionality as the assembly-language code used in the previous example. Compile and run the program
to observe its behavior.

- \
< New Project Wizard =

File Seﬁlng;\System Seﬁlng;\ Program Type\ Program Settings\ Connection Settmg;\\ Memory Settmg;\

Specify program details

- Source files
First source file is used to determine the name of the binary program file.

D:/Menitor_Tutorial/main.c Add...

D:/Monitor_Tutorial/ITAG_UART.c

Down

r Program op

Additional compiler flags: |-g -OGl |

Additional linker flags: | |

Source files highlighted in blue are sample program files, which will be created in the project directory.

| < Back | | Next = | | Finish | | Cancel |

Figure 23. Source files for a C program.

The C code in JTAG_UART.c uses memory-mapped I/O to communicate with the JTAG UART. Alternatively, it is
possible to use functions from the standard C library stdio.h, such as printf and scanf. In this case it is necessary
to use the Semihosting terminal option, which can be selected in the window shown in Figure 9. Instead of the
JTAG_UART_for_ARM_0, choose Semihosting in the dropdown menu for the Terminal device. Semihosting is
a mechanism by which a program running on an ARM processor can request services from the debugger (Monitor
Program). When an ARM program is compiled by the Monitor Program, special C libraries are used which have
been modified to use the Semihosting mechanism. All C library functions that communicate with a terminal, such as
printf and scanf, will send/receive text to/from the Monitor Program’s Semihosting terminal. In effect, Semihosting
allows the host computer to provide input and output facilities that a system implemented on a DE1-SoC board does
not have. A sample program, called Semihosting Example, is available when specifying C as the program type in
Figure 7.

Intel Corporation - FPGA University Program 23
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

6.1 Source Level Debugging

The Monitor program supports common source level debugging features such as step over, step into, step out, and
visualizing variables. Using the JTAG UART sample program project you created in the previous section, go to the
project settings (File > Edit Project) and navigate to the Program Settings tab. In the Compiler Flags input box,
ensure that the optimization level is set to 0, by replacing -O, -O1, -0O2, or -O3 flag with -O0. An optimization
level of 0 allows the Monitor Program to read and display variables from memory. Figure 24 shows the Monitor
Program’s text editor. The editor will be disabled during the debug session, and re-enabled when the debug session
is exited. Now save the project (File > Save Project), and compile and load the program (Actions > Compile &
load).

Intel FPGA Monitor Program - Monitor_Terminal

File Edit Actions Windows Help
O HeiE Phd 2nlk @
Project Files — % | Editor — X | Registers - X
[Monitor_Terminal [aine | Reg |Valud
D 1 * function prototypes */
[] JTAG_UART.c
2 [void put_jtag(char);
3 |char get_jtag(void) ;
4 |/
5 | * This program demonstrates use of the JTAG UART port in the DEQ-Soi
6 | * It performs the following:
7| i. sends some example text strings to the JTAG UART
8 * 2. reads and echos character data from/to the JTAG UART
g
10 |int wain(woid)
1|t
12 char text_string[] = "\nITAG UART exawple codel\n> \O";
13 char *str, o
14
15 /% print a text string */
18 for (str = text_string; *str != 0; ++str)
17 put_jtay [*str);
18 =
. 14 0]
[Egitor] / Disassembly | Breakpoints | Memory | Watches | Trace
Terminal — 3| Info&Errors s
>>Running preloader.. -
>»Preloader successfully run.
Starting GDB Server
Connection established to GDB server at localhost:3100
GDB server connection Terminated.
Successfully executed the HES preloader. |
=
] e — D
nfo & Errors | GDE Server | Debug | Variables |

Figure 24. The Monitor Program with a source file open in editor view.

6.1.1 Using Breakpoints

Once the program is loaded, navigate to the Editor window of the Monitor Program. Go to the File menu and select
File > Open... to open the C source file which contains the main function of you program (most likely main.c).

Once the program is loaded, toggle the breakpoint at a line of source code by clicking on the numbers to the left of
the source code text. If a breakpoint does not show up on the line similar to Figure 25, the line of source code likely
does not correspond to an instruction. If this happens, try choosing a different line.

Once the breakpoint is set, continue the program by clicking the green arrow on the toolbar, or Actions > Continue.
Once the program halts, the Monitor Program should look similar to Figure 26. In the Disassembly view the source
level breakpoint is marked with a red square as in Figure 27. This differentiates source level breakpoints from in-
struction level breakpoints.

24 Intel Corporation - FPGA University Program
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

Intel FPGA Moni

ox00000128
OxFEEEEEEE
0xFFEFLIIC
0x00000001
0xFFFEFCO0
0xFFEFECO0
OxFFFF4RES
000000076
OxFFFFFOLS
OxFFEFSE2E
000000005
0xFFD02000
0xFFD02000
0x0000001C
OxFFEFEEF)
0xFFFFLISE

=0
[TAG_UART.c

19 /# read and echo characters */
20 while (1)
2 ¢

o ¢ = get_jtag [1; 0x20000103
23 iE (e = N0
2 put_jtag (c);

Breakpoints | Memory | Watches | Trace

Terminal - x

JTAG UBRT link established using cable "DE-SoC [USB-1]", device 2,
instance 0x02

Info & Errors | GDB Server | Debug | Variables

Figure 25. Setting a breakpoint in the editor view.

Intel FPGA Moni

Help
B G E Yod 0k
— | Disassembly - x
Goto instruction| Address (hex) or symbol name: |[so
0x00000ZAC str 3, [ril, #-8]
0x00000ZB0 lar 3, [ril, #-8]
0x00000284 1w x3, 23]
0x00000288 ap x3, W0
ox0000028C bre 291 <mains0x3t>
oxo00002c0 b 2c8 anainstxse>
while (1)
¢ OXFFFFSE28
© - gec tag (): L 2
v = 0x00000005
10
put_jtag () e
0x000002C4 T2
! s
1=
cpsz
© = get_yay (1
Moxooo0szce ML an <get_jtap 5
L D}
Editor , Disassembly | Breakpoints | Memory | Watches | Trace
Terminal — x| nfo&Errors - x
JTAG UART link established using cable "DE-SoC [USB-1]", device 2,
instance 0x02
JTAG UART example code
>
Info & Errors | GDE Server | Debug | Variables

Figure 26. Hitting a breakpoint in the editor view.

6.1.2 Source Level Debugging Actions

Navigate back the editor view and perform a Step Into action by selecting Actions > Step Into, or by using the main
toolbar. This will step to the next line of source code to be executed. If the program steps into a function in another
file, the Monitor Program will open the file in a new tab and highlight the line.

Next, perform a Step Out action by selecting Actions > Step Out, or by using the main toolbar. This will step out
of the current function by executing until the first line of source code after returning from the current function. The
Monitor Program will print an error to the Info & Errors window if it cannot step out of the current function. This
may occur if the program is currently in the main function, or if the function does not return. The step out function
is only available for C programs, it is not available for assembly programs.

Intel Corporation - FPGA University Program 25
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

Intel FPGA Monitor Program - Monitor_Terminal : main.srec [Paused]

File Edit Actions Windows

elp
B G E Yod 0k

ein.e main(void)
12 char text_string[] = "\nITAG UART exemple code\n> \0';
13 char *str, c;

15 /% print a text string */
16 for (str = text_string; *str = 0; ++str)
17 put_jtag (*s

18 /* read and echo cha:
20 while (1)

21 «

(] © = get_jtag ();
23 if (e != 01
24 put_jtag (c);

Terminal - x

JTAG UBRT link established using cable "DE-SoC [USB-1]", device 2,
instance 0x02

JTAG UBRT example code
>

Info & Errors | GDB Server | Debug | Variables

Figure 27. Source level breakpoint in the disassembly view.
» b Jk

Figure 28. Step Over, Step Into, Step Out toolbar icons

The Step Over action (Actions > Step Over) moves to the next line of source code without stepping into functions.
Execution will continue to the next line of source code inside the current function.

6.1.3 Variable Values

Variables o
Name Type Value
Statics
FlLocals
c unsigned char u]
str unsigned char * 0:3FFFFFD6
Etitext string unsigned char[28] JTAG UART exampl...

Info&Errors/ GDB Server/ Debug | Variablﬁj

Figure 29. Monitor Program Variable View.

The Monitor Program’s Variables view displays the value of C program variables when the program is halted. Some
variable types such as Arrays, Typedefs, Structures and Unions will be expandable in the view. Use the + button to
expand and view the variables contents. Right clicking on a variable presents the options to jump to the declaration
of the variable, and the display format of the variable.

Go To Declaration will open the file the variable is declared in and scroll to the declaration line number.

26

Intel Corporation - FPGA University Program
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

Display As... will change the format in which the variable is displayed.

Variable values are only available with an optimization level of 0 (gcc command line argument -00). For instructions
on how to change the programs optimization level, see the first paragraph of this section.

6.1.4 Enabling and Disabling Source Level Debugging

The source level debugging feature of the Monitor Program is a beta feature in the current release. The feature
can be enabled and disabled at any point by going to the Edit menu and selecting Edit > Enable Source Level
Debugging, or Edit > Disable Source Level Debugging, depending on whether the feature is currently disabled
or enabled respectively.

6.1.5 Setting the Optimization Level in Programs with Driver Support.

To set the optimization level for a Program with Driver Support (or BSP), first create a TCL script in the base
directory of the project (the same directory as your AMP project file). The TCl file should have a .zc! file extension,
for example config.tcl. Open this file in a text editor and add the single line:

set_setting hal.make.bsp_cflags_optimization -O0

Where the argument -OO0 above is the desired optimization level. Now open the project settings in the Monitor
Program and navigate to the Program Settings tab. In the BSP settings Tcl script input box (shown in Figure 30)
enter the path to the TCL script you just created, or use the Browse button to search for it.

Project Settings Wizard X

File Settings | System Settings | Program Type * Program Settings | Connection Settings |
Specify program details
Source files
First source file is used to determine the name of the binary program file.
C:/tempy/TESTFOLDER/MEDIA_HAL/media_HAL.c Add...
Down
 Program options
BSP settings Tel script (optional):
[| [Browse...|

Figure 30. Adding a TCL script to a Program with Driver Support.

Click the Finish button to close the dialog and save and compile the project. The optimization level should be set for
both the generated (BSP) files, as well as your project files.

Intel Corporation - FPGA University Program 27
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

7 Using the Monitor Program with Interrupts

The Monitor Program supports the use of exceptions and interrupts in programs. In an ARM-based system, interrupt
requests are handled by the Generic Interrupt Controller. Consult the tutorial Using the ARM Generic Interrupt
Controller, which is available at the Intel website, for a description of how interrupts are processed.

7.1 Interrupts with Assembly-Language Programs

To see an example using interrupts with assembly-language code, create a new Monitor Program project. When cre-
ating the new project choose the ARM processor, set the program type to assembly language and select the sample
program named Interrupt Example. Figure 31 lists the source files for this example. The main program is in the file
interrupt_example.s. Comments given in this file explain the behavior of the program.

Source files

First source file is used to determine the name of the binary program file.

D:/Monitor_Interrupts/interrupt_examples
D:/Monitor_Interrupts/exceptions.s
D:/Monitor_Interrupts/hps_timer_isr.s
D:/Monitor_Interrupts/key_isr.s
D:/Monitor_Interrupts/timer_isr.s

Figure 31. The assembly-language source files for the ARM interrupt example.

To enable the proper handling of exceptions and interrupts it is necessary to specify the memory settings as required
by the ARM processor. Figure 10 indicates the memory settings if exceptions and interrupts are not used. Figure 32
shows the required memory settings for this example. The memory locations in the address range 0x0 to to 0x3F
must be reserved for vectors used in various exceptions and interrupts. The main program can start at address 0x40.

Complete the project, download the program, run it, and observe its behavior when you press KEYI1, KEY2 or KEY3.

7.2 Interrupts with C Programs

To see an example using interrupts with C code, create a new Monitor Program project. When creating the new
project choose the ARM processor, set the program type to C language and select the sample program named Inter-
rupt Example. Figure 33 lists the source files for this example. The main program is in the file interrupt_example.c.
Comments given in this file explain the behavior of the program.

Complete the project, download the program, run it, and observe its behavior when you press KEYI, KEY2 or KEY3.

28 Intel Corporation - FPGA University Program
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

Specify program memory settings

- Memory options

Here you can specify section names and their start and end addresses. These sections will be used by
the linker to place code and data at the specified addresses. To ensure correct use of the section names
by the linker, the names must match those identified by the assembler directives, such as text.

Linker Section Presets: |Exceptions "'|
Section Mame | Memery Device Address Range |
. VEeCtors REM DDR3_SDEAM 0x00000000 - Ox0000003F
.LEXL REM DDR3_SDEAM 0x00000040 - OX3FFFFFET
.3tack REM DDR3_SDEAM Ox3FFFFFFE& - OX3FFFFFFF

Figure 32. Memory Settings for the ARM interrupt example.

~Source files

First source file is used to determine the name of the binary program file.

D:/Monitor_Interrupts_C/interrupt_example.c
D:/Monitor_Interrupts_C/exceptions.c
D:/Monitor_Interrupts_C/HPS_timer_ISR.c
D:/Monitor_Interrupts_C/interval_timer_ISR.c
D:/Monitor_Interrupts_C/JTAG_UART.c
D:/Monitor_Interrupts_C/pushbutton_ISR.c

Figure 33. The C-language source files for the ARM interrupt example.

8 Working with Windows and Tabs

It is possible to rearrange the Monitor Program workspace by moving, resizing, or closing the internal windows
inside the main Monitor Program window.

To move a particular window to a different location, click on the window title or the tab associated with the window,
and drag the mouse to the new location. As the mouse is moved across the main window, the dragged window will
snap to different locations. To detach the dragged window from the main window, drag it beyond the boundaries
of the main window. To re-attach a window to the main window, drag the tab associated with the window onto the
main window.

To resize a window, hover the mouse over one of its borders, and then drag the mouse. Resizing a window that is
attached to the main window will cause any adjacent attached windows to also change in size accordingly.

To hide or display a particular window, use the Windows menu. To revert to the default window arrangement,
simply exit and then restart the Monitor Program. Figure 34 shows an example of a rearranged workspace.

Intel Corporation - FPGA University Program 29
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

Intel FPGA Monitor Program

File Edit Actions Windows Help

O RB+B dPdd 20ml Py

Project Files — X | Breakpoints — X | Disassembly — | Registers - X

&l [r]
Editor , Disassembly | Memory | Watches | Trace |

Terminal — X | Info & Errors hes

Info & Errors | GDB Server / Debug | Variables /

Figure 34. The Intel FPGA Monitor Program with a rearranged workspace.

9 Appendix A

This appendix describes a number of Monitor Program features that are useful for advanced debugging or other
purposes.

9.1 Using the Breakpoints Window

In Section 3.6 we introduced instruction breakpoints and showed how they can be set using the Disassembly window.
Another way to set breakpoints is to use the Breakpoints window, which is depicted in Figure 35. This window

supports three types of breakpoints in addition to the instruction breakpoint: read watchpoint, write watchpoint, and
access watchpoint, as follows:

* Read watchpoint - the processor is halted when a read operation is performed on a specific address.
* Write watchpoint - the processor is halted when a write operation is performed on a specific address.

* Access watchpoint - the processor is halted when a read or write operation is performed on a specific address.

In Figure 35 an instruction breakpoint is shown for the address 0x00000010. This corresponds to an address in
simple_program.s. In Section 3.6 we showed how to create such an instruction breakpoint by using the Disassembly
window. But we could alternatively have created this breakpoint by right-clicking in a grey box under the label

30 Intel Corporation - FPGA University Program
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

Intel FPGA Monitor Program - Monitor_Tutorial : simple_program.srec [Paused]

File Edit Actions Windows Help

O He+EH Hbhd 20wk PP

Project Files — % | Breakpoints — X | Registers - X
[& Monitor_Tutorial — Instruction breakpoint: Reg "
[simple program. | Address | Instruction | Condition| o 0x00 0

0x00000010k 8 <LOOP: ro ?xFFFFF F

— Read watchpoint: rz
| Address 3 0 0
rd 0xFFFFECO0

— Write watchpoint: 5 OxFFFF4AE4
JAddres ré 0x00000076
7 OxFFFFF014

— Access watchpoint: 8 O0xFFFFSE28
JAddres r9 0x00000005
rlo 0xFFDO2000

— Source breakpoint: rll 0xFFDO2000
| File Mamd Line Number ri2 €x0000001€)
sp 0xFFFFEBFO

— Temporary instruction breakpoint: 1r 0xFFFF1358
JAddres cpsr 0x200001D3

— Run until:

Condition
Run

Editor | Disassembly , Breakpoints | Memory | Watches | Trace |

Terminal — X | Info & Errors - X

JTAG UART link established using cable "DE-SoC [USB-1]", device 2,
instance 0x02

): Non-memory - ARM AS EPS dcanl 0x££c01000
): Won-memory - ARM_AS_HPS_l3regs O
)t Non-memory - ARM A9 HPS sdrctl O
): Won-memory - ARM_AS_HPS_timer Oxfff
Non-memory

gram stopped

Info & Errors | GDB Server | Debug ; Variables

_scu 0xfffec000

Figure 35. The Breakpoints window.

Instruction breakpoint in Figure 35 and then selecting Add. A breakpoint can be deleted by unchecking the box
beside its address.

Setting a read, write, or access watchpoint is done by right-clicking on the appropriate box in Figure 35 and speci-
fying the desired address.

The Monitor Program also supports a type of breakpoint called a conditional breakpoint, which triggers only when
a user-specified condition is met. This type of breakpoint is specified in the Run until section by double-clicking on
the empty box under the label Condition in Figure 35 to open the dialog shown in Figure 36. The condition can be
associated with an instructionbreakpoint, or it can be a stand-alone condition if entered inthe Run until box in the
Breakpoints window. As an example, we compiled and loaded the simple_program project. Then, we entered the
condition R3 == 5. The condition causes the breakpoint to trigger only if register R3 contains the value 5. Thus,
running this program causes the LEDs to display the current state of the slider switches as these switches are set to
different patterns. But, when the selected pattern is 0x005, the conditional breakpoint will stop the execution of the
program.

Note that if a stand-alone condition is entered in the Run until box, then the Run button associated with this box
must be used to run the program, rather than the normal Actions > Continue command. The processor runs much
more slowly than in its normal execution mode when a conditional breakpoint is being used.

Intel Corporation - FPGA University Program 31
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM

For Quartus Prime 16.1

9.2 Working with the Memory Window

The Memory window was shown in Figure 20. This window is configurable in a variety of ways:

32

Figure 36. The Conditional Breakpoint dialog.

Run Until Expression &J

Syntax
Register values:
ro,ri r2, ...

Mumber formats:
decimal: ###
hexadecimal: Ox###
octal: 0##%
binary: Db###

Operators:
===, <, = <=, 2, 80 |
oo S %

Accessing memory:
mema(address): byte value at address
mem16{ address): half-word value at address
mem32{ address): word value at address

B3 =75

Memory element size - the display can format the memory contents as bytes, half-words (2-bytes), or words
(4-bytes). This setting can be configured by right-clicking on the Memory window, as illustrated in Figure 37.

Number of words per line - the number of words per line can be configured to make it easier to find memory

addresses, as depicted in Figure 38.

Number format - this is similar to the number format option in the Register window described in Section 3.7,
and can be configured by right-clicking on the Memory window.

Display order - the Memory window can display addresses increasing from left-to-right or right-to-left.

Intel Corporation - FPGA University Program

November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM

For Quartus Prime 16.1

Ox00000000 ES9F1
Ox00000010 EAFFF

0x00000020 ooooo
0x00000030 55555
0x00000040 Ean0o
0x00000050 Ezd6e
0x00000060 E3a0l
0x00000070 E15ED
0x00000080 0a000

View as
MNumber of words per line 4
Number format 4

Display order 4

Byte (1-byte)
Half-word (2-bytes)
* Word (4-bytes)

0x00000090 EGACO
0x0000004D 1AFFF

Switch to character mode

0x000000ED 0a000
0x000000Co 1AFFF

Show equivalent ASCII characters

0x000000D0 1AFFF
0x000000ED EZ5F1
0x000000FD BanOo
0x00000100 E3500
0x00000110 E3500

Goto memory address...
Memory fill...

Load file into memory...

O0x00000120 ooooo0c

Figure 37. Setting the memory element size.

Ox00000000
Ox00000010
0x00000020
0x00000030
0x00000040
0x00000050
0x00000060 E3
0x00000070 El
0x00000080 04
0x00000090 E5
0x0000004D 14
0x000000ED 04
0x000000Co 14
0x000000D0 14
0x000000ED Ez
0x000000FD By
0x00000100 E3
0x00000110 E3

MNumber of words per line

Number format 4

1
2

Display order 4 q
8

Switch to character mode

Show equivalent ASCII characters ;i
Goto memory address... 64
Memory fill... Auto

Load file into memory...

O0x00000120 ulu]

Figure 38

Intel Corporation - FPGA University Program
November 2016

ooCEY TOOOOTES ESTroooy ELFFFrTe

. Setting the number of words per line.

33

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

9.2.1 Character Display

The Memory window can also be configured to interpret memory byte values as ASCII characters. This is useful if
one wishes to examine character strings that are stored in the memory. For this purpose it is convenient to view the
memory in bytes and characters simultaneously so that the characters appear in the correct sequence. This can be
accomplished by clicking the Switch to character mode menu item, as illustrated in Figure 39. A sample display
in the character mode is shown in Figure 40.

0x00000000 Read Selected Address Range
0x00000010
0x00000020 e 3 »
0x00000030 -
0x00000040 MNumber of words per line 4
0x00000050
»
Ox00000060 Mumber format
0x00000070 Qisplay order [
0x00000080
000000050 Switch to character mode
0x00000040
0x000000B0 :
Show equivalent ASCII characters
\|oxooooooco = q
0x000000D0 G dd
x000000ED oto memory address...
! nx00o000FD Memory fill...
0x00000100 .

0x00000110 Load file into memory...

AennAnnT 20 € T TEOTTANT TREE T

Figure 39. Switching to the character mode.

Memaory - X
Goto address (hexnrsvmbnlname):| ﬂ"JfJEfJfJ"J"J||:| Query Devices
[a]
000020000 6l 62 63 64 65 66 67 65 69 64 6B &6C el 6E abcd efogh ijk1l mnop
00020010 71 72 73 74 75 76 717 78 79 74 7B C 31 32 qgr st WV WX ¥z il 1234
0x000Z0020 FF 6B B3 DF 7F F§ 97 FY D7 4D EF 70 Fl1 E2 OO0 o3>0 OoMOp oo _0o
0x00020030 DE F9 DF 38 94 F5 D3 ES Fa FF 79 €D D3 DeE ooanos 00 | OO0 v n ooodeE
Mx000zZ0040 El FD' FE EF BF D5 Fg a4l ZE BS D4 E3 EQ FE oooao oooao .00 Too -
000020050 37 BB 3F FE E3 8B 6E ED BE 84 ZE 77 TE 25 T0¢=#0 “kns oh+w ~ % 0 ~
000020060 5D ER F7 F& 95 E1 EE 5F DF E3 63 &6 DF &aC]+00 1f£c ¢ Orct O0l=20
0x00020070 4d BZ 4B FF 59 BS EBEO FE CE §9 65 EF Fi 4D oorKQ iooano o)kO oM~ 0
0x00020080 FC EE FDI' FF Da YF 74 DD 5D B3 ED SE F? 1E =000 u] t]Onw u] oad
Ox00020090 76 hA C3 29 74 DB AL 6F 13 75 F5 EF 79 E7 wZ 0 tO00ao u0oano v OO0
00020040 F3 Fo DF &F 7B BE D& EF 7C FF 7I» 5F 1C 5F ooow {ooao 1ol _ _ono
Ox000Z00E0 F7 FF EE CE D7 BF LOF D5 2D 65 D4 DE §F 62 oo-0 oooano -e00O TbaJ0
Ox000200C0 47 §3 3JE AF &1 35 D& 6D A4F D3 45 SE a7 F7 o%:=0 O50mn ooo” wozEod
0x000Z0000 JE E1 li 7E D5 C2 FD 71 56 56 FE 5F E4 EY >0 - ooodaqg W o o_ ooao -~
0x000Z00E0D &F EY FD 07 7F BE7 59 64 77 F? 6D F7 ED &C o0 ovd wiOn0O o108
Mx000200F0 34 67 DA BE Fi D7 94 YF 77 CE SE 3F L6 B4 rgOfE oo+d wOo" oz voo ||
n 0 - - . -]

Editor Watches

Disassembly / Breakpoints , Memory

Figure 40. Character mode display.

It is possible to return to the previous memory view mode by right-clicking and selecting the Revert to previous
mode menu item.

34 Intel Corporation - FPGA University Program
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

9.2.2 Memory Fill

Memory fills can be performed in the Memory window. Click the Actions > Memory fill menu item or right-click
on the Memory window and select Memory fill. A Memory fill panel will appear on the left side of the Memory
window. Simply fill in the desired values and click Fill.

9.2.3 Load File Data into Memory

Data stored in a file can be loaded into the memory by using the Memory window. This feature is accessed by
selecting the command Actions > Load file into memory or by right-clicking on the Memory window. The Load
file panel will appear on the left side of the Memory window, as illustrated in Figure 41, to allow the user to browse
and select a data file. The user provides a base address in memory where the data should be stored.

Memory - X
Goto address [hexnrsvmbnlname}:| EIH Go ||:| Query Devices
Load file Hide —

Q=00000000 E5S9F100C ES9FzZ00C E5923000 ELs13000

Select a file: EIxEIIIIEIEIEIIZIlEI EAFFFFFC FFzO00O0 FFz00040 00000000

000000020 qooooooo ooooooon Qoo00os0 Qooooooo
0=00000030 35555555 55555555 535555555 55555555

File type: 0x00000040 E49E6023 0BO000L4 ES830520 ELZFFF94

0x00000050 FS59F9039 ED910043 E3102912 44000103

Start address ihﬂ):l:l 0x00000060 FzA451FF EACO00l4 E3A08047 ELZFFFLF
0x00000070 CSSE4ABA 5355A067 65205456 716D657A E

0=00000030 6369657C DE&S646F 04=0Z15E 08900075
Q=00000050 Freololz FFFF5z04 C4z41100 logoozso
000000040 Q0o0DDe2s 004430E4 4400664 Qos4a4co0
000000080 CEABFFFY DSDEEBTDY DED&GS3D ACAL0Z3F
O=000000co ARZES3AZ eD5AZ5351 SEL1DTFF ga87FTsY
Q=00000000 TE1&B13C 11FDEZDS SEFE4656 EBADETF4
0=000000EQ 07FDETaF ed59B7TF FIeDEB777 ZeFFaCED

14 N
Eu::|it|::rr)'r Disasserr1|:}|],r)'r Breakpoints | Memor}fj Watches)'r Trau::ne)'r

4]

Figure 41. The Load file panel.

The format of these files is illustrated in Figure 42. The file consists of any number of lines, where each line
comprises a comma-separated list of data values. Each data value is expressed as a hexadecimal number with an
optional — sign. Two additional parameters can be specified: the value of the delimiter character (comma is the
default), and size in bytes of each data value (1 is the default).

Intel Corporation - FPGA University Program 35
November 2016

https://www.altera.com/support/training/university/overview.html

For Quartus Prime 16.1

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM

ae8,11,22,33
1844 ,2055,30866, 4877
10000088 ,20000099,3008008aa,4880888bb

1,-1,2,-2

Figure 42. A Delimited hexadecimal value file.

9.3 Setting a Watch Expression

Watch expressions provide a convenient means of keeping track of the value of multiple expressions of interest.
These expressions are re-evaluated each time program execution is stopped. To add a watch expression:

1. Switch to the Watches window.

2. Right-click on the gray bar and click Add, as illustrated in Figure 43.

Watches

Expression
=

| Yalue |

Figure 43. The Watches window.

3. The Edit Watch Expression window will appear, as shown in Figure 44. The desired watch expression can then
be entered, using the syntax indicated in the window. In the figure, the expression mem32 (sp) is entered,
which will display the value of the data word at the current stack pointer address.

36 Intel Corporation - FPGA University Program
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

Edit watch expression X

Syntax
Register values:
ro,ri r2, ...

Mumber formats:
decimal: ###
hexadecimal: Ox###
octal: 0##%
binary: Db###

Operators:
===, <, = <=, 2, 80 |
oo S %

Accessing memory:
mema(address): byte value at address
mem16{ address): half-word value at address
mem32{ address): word value at address

mem32 (3p)

Figure 44. The Edit Watch Expression window.

4. Click Ok. The watch expression and its current value will appear in the table. The number format of a value
displayed in the watch expression window can be changed by right-clicking on the row for that value. As the
program being debugged is repeatedly run, the watch expression will be re-evaluated each time and its value
will be shown in the table of watch values.

9.4 The GDB Server Panel (Advanced)

To see this panel, select the GDB Server panel of the Monitor Program. This window will display the low-level
commands being sent to the GDB Server, used to interact with the HPS system on the DE1-SoC board. It will also
show the responses that GDB sends back. The Monitor Program provides the option of typing GDB commands and
sending them to the debugger. Consult online resources for the GDB program to learn what commands are available.

9.5 Running an ARM Program from an SD Card

After developing an ARM program, you may wish execute it as a standalone application on the FPGA board with-
out intervention from the Monitor Program. This can be accomplished by using the Actions > Generate
U-Boot SD Card Binaries operation of the Monitor Program. This operation generates files that can be
placed into a special microSD card configured with the U-Boot loader. When the board is powered on with the SD
card inserted, the ARM processor automatically runs the U-Boot loader, programs the FPGA (if applicable), loads
the program into memory, and executes the program.

The U-Boot SD card images for supported DE-series boards are provided with the Monitor Program installation in
the directory /<installation path>/University_Program/SD_Images/. Unzip the file corresponding to your board and
use a tool such as Win32DiskImager to load the .img file into a microSD card (2GB or larger). Note that this action

Intel Corporation - FPGA University Program 37
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

will remove any existing data in the SD card. Once the SD card has been loaded with the image, it will contain the
following files:

* program.bin
* setup_environment.bin

* fpga.rbf

e set_vbar.bin

The files program.bin, setup_environment.bin, and fpga.rbf are generated by the Actions > Generate U-Boot
SD Card Binaries operation, and together they represent a Monitor Program project. The file program.bin is
the compiled ARM program, setup_environment.bin is a file that contains project configuration details, and fpga.rbf
is the FPGA programming file used by the project. All of these files except fpga.rbf are mandatory for successful
execution (fpga.rbf may be omitted if the project does not use the FPGA). The default files included in the SD card
image correspond to the Getting Started sample program bundled with the Monitor Program. The file set_vbar.bin
is a program that is part of the boot sequence that you must not modify nor delete.

To place your own ARM application into the SD card, generate program.bin, setup_environment.bin, and fpga.rbf for
your project by selecting Actions > Generate U-Boot SD Card Binaries in the Monitor Program.
Copy over the files to the SD card and replace any prior copies.

10 Appendix B - Configuration File

The Monitor Program configuration file allows default values to be set for project creation. The monitor program
searches $(UniversityProgramRoot)/amp.config for the configuration file, where UniversityProgramRoot is the
path to the University Program directory in the Quartus installation.

For example C:/intelFPGA/16.1/University_Program/amp.config.

To change the default path to the configuration file, add the following command line argument when running the
Monitor Program: ——-config-file=<Path to File>

Table 2 summarizes the configuration options available in the Monitor Program.

The configuration file uses white space or an equal sign as a delimiter, for example: flag option or flag=option.
Where flag is one of the values in the first column of Table 2 and option is the default value for that flag. Number
signs (#) can be used to add comments to the configuration file. Lines starting with the symbol will not be processed
with the configuration file. Boolean values can use integers or case insensitive strings. Options of ’false’, 'no’ and
’0” will all produce a false Boolean, any other values will produce a true Boolean.

38 Intel Corporation - FPGA University Program
November 2016

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM

For Quartus Prime

16.1

Flag

Explanation

project_name
project_path

architecture

system

c_compiler_flags
c_linker_flags
use_small_c_lib
emulate_instr
include_system_info_file
answer_for_reload_file

The project name.

The new project directory path.

The architecture.

The default sample system to be used (ex. DE1-SoC Computer)
C Compiler flags

C Linker flags

Boolean to use the small C Library (Nios II)

Boolean to emulate unimplemented instructions

Boolean whether to include the system info header by default.
yes or no option to bypass the file reload dialog when files are edited outside the
program. If undefined, the dialog will be shown.

Table 2. Configuration Flags and Default Options.

Intel Corporation - FPGA University Program
November 2016

39

https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR ARM For Quartus Prime 16.1

Copyright © 1991-2016 Intel Corporation. All rights reserved. Intel, The Programmable Solutions Company, the
stylized Intel logo, specific device designations, and all other words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Intel Corporation in the U.S.
and other countries. All other product or service names are the property of their respective holders. Intel products
are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights.
Intel warrants performance of its semiconductor products to current specifications in accordance with Intel’s stan-
dard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel
assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Intel Corporation. Intel customers are advised to obtain
the latest version of device specifications before relying on any published information and before placing orders for
products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, repre-
sentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, warranties
of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

40 Intel Corporation - FPGA University Program
November 2016

https://www.altera.com/support/training/university/overview.html

	1 Introduction
	1.1 Who should use the Monitor Program

	2 Installing the Monitor Program
	2.1 Using a Windows Operating System
	2.2 Using a Linux Operating System

	3 Main Features of the Monitor Program
	3.1 Creating a Project
	3.2 Compiling and Loading the Program
	3.2.1 Compilation Errors

	3.3 Running the Program
	3.4 Using the Disassembly Window
	3.5 Single Stepping Through Program Instructions
	3.6 Using Breakpoints
	3.7 Examining and Changing Register Values
	3.8 Examining and Changing Memory Contents

	4 Working with Project Files
	4.1 Modifying the Settings of an Existing Project

	5 Using the Terminal Window
	6 Using C Programs
	6.1 Source Level Debugging
	6.1.1 Using Breakpoints
	6.1.2 Source Level Debugging Actions
	6.1.3 Variable Values
	6.1.4 Enabling and Disabling Source Level Debugging
	6.1.5 Setting the Optimization Level in Programs with Driver Support.

	7 Using the Monitor Program with Interrupts
	7.1 Interrupts with Assembly-Language Programs
	7.2 Interrupts with C Programs

	8 Working with Windows and Tabs
	9 Appendix A
	9.1 Using the Breakpoints Window
	9.2 Working with the Memory Window
	9.2.1 Character Display
	9.2.2 Memory Fill
	9.2.3 Load File Data into Memory

	9.3 Setting a Watch Expression
	9.4 The GDB Server Panel (Advanced)
	9.5 Running an ARM Program from an SD Card

	10 Appendix B - Configuration File

