
Using Linux on the DE1-SoC

For Quartus Prime 17.0

1 Introduction

This tutorial describes a Linux operating system that runs on the DE1-SoC Computer. This computer system is
implemented on the DE1-SoC development and education board, which is described on the Intel FPGA University
Program website. Linux runs on the ARM Cortex-A9 processor that is part of the Cyclone V SoC device. In this
tutorial we show how Linux can be stored onto a microSD memory card and booted by the ARM processor. We also
show how software programs can be developed that run on the ARM processor under Linux, and which can make
use of the hardware resources in the DE1-SoC Computer. These resources include peripherals in the hard processor
system (HPS), and custom hardware peripherals implemented within the FPGA in the Cyclone V SoC device.

Contents:

• Getting Started with Linux on the DE1-SoC board

• Developing Linux Applications that use FPGA Hardware Devices

• Developing Linux Drivers for FPGA Hardware

• Configuring the FPGA from Linux

Requirements:

• DE1-SoC development and education board. This board is described on Intel’s FPGA University Program
website, and is available from the manufacturer Terasic Technologies.

• Host computer, running either Microsoft Windows (version 10 is recommended) or Linux (Ubuntu, or a similar
Linux distribution). The host computer is used for developing software programs that run under Linux on the
DE1-SoC board

• Ethernet cable, WiFi USB adaptor, and/or Mini-USB cable, for connecting the DE1-SoC board to the host
computer

• MicroSD card (8 GB or larger)

Optional:

• Intel FPGA SoC Embedded Design Suite (required for Appendix C).

• Intel Quartus Prime Software (required for Appendix D).

Intel Corporation - FPGA University Program
February 2017

1

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

2 Running Linux on the DE1-SoC Board

Linux is an operating system (OS) that is found in a wide variety of computing products such as personal computers,
servers, and mobile devices. Standard distributions of Linux include device drivers for a vast array of hardware
devices. In this tutorial we make use of some existing drivers, and also show how the user can make drivers for their
own hardware.

2.1 The Cyclone V SoC Device

The DE1-SoC board features an Intel SoC FPGA, which contains two main components: a Hard Processor System
(HPS), and a Cyclone V FPGA. The HPS contains an ARM Cortex-A9 dual-core processor, which we will use to
run Linux, and various peripheral devices such as timers, general-purpose input/output (IO), USB, and Ethernet.
The HPS and FPGA are coupled via bridges that allow bidirectional communication. Later in the tutorial, we will
show how to write Linux programs that access hardware devices implemented in the FPGA.

2.2 The DE1-SoC-UP Linux Distribution Image

A number of Linux distributions are available for the DE1-SoC board. These Linux distributions range from a
simple command-line only version to the more full-featured Ubuntu Linux distribution that includes a graphical user
interface (GUI). The Linux distributions are provided in the .img (image) file format, which can be written onto a
microSD card and booted on the DE1-SoC board. For this tutorial we will use the DE1-SoC-UP Linux distribution,
whose image file DE1-SoC-UP-Linux.img can be downloaded from the Intel FPGA University Program website.

The DE1-SoC-UP Linux distribution contains a number of key features that we will use in this tutorial. First, it
provides a GNU Compiler toolchain allowing you to compile C and C++ programs. We will make extensive use
of this toolchain to compile programs in Section 3. Another feature is the automatic programming of the FPGA
that takes place during the process of booting the DE1-SoC-UP OS. The OS programs the FPGA with the DE1-SoC
Computer system, which contains IP cores that communicate with the peripheral devices found on the DE1-SoC
board, such as the switches, LEDs, pushbuttons, VGA, and audio. In Section 3.3, we will show how to write
programs that communicate with Parallel IO cores of the DE1-SoC Computer to access the LEDs and pushbuttons
om the board. The DE1-SoC Computer system is described in detail in the document DE1-SoC Computer with ARM.

2.3 Preparing the Linux MicroSD Card

The DE1-SoC board is designed to boot Linux from an inserted microSD card. In this section, you will learn how to
prepare a Linux microSD card by storing the DE1-SoC-UP-Linux.img image file onto a microSD card. This section
of the tutorial assumes that you have access to a computer with a microSD card reader/writer. To write the image
into the microSD card, we will use the free-to-use Win32 Disk Imager tool which you can download and install from
the Internet. The instructions for using this tool are provided below:

1. Insert a microSD card (8 GB or larger) into your computer’s microSD card reader/writer, and then launch the
Win32 Disk Imager program.

2. Select the drive letter corresponding to the microSD card under Device, as indicated in Figure 1.

2 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Figure 1. The Win32 Disk Imager program.

3. Select the DE1-SoC-UP-Linux.img image under Image File, as shown in Figure 1. This image file can be
found on the Intel FPGA University Program webpage alongside this tutorial.

4. Click Write to write the microSD card. If prompted to confirm the overwrite, press yes. Once the writing
is complete, you will see the success dialog shown in Figure 2.

Figure 2. Writing a file to the microSD card using Win32 Disk Imager.

2.4 Configuring the DE1-SoC Board for use with Linux

First ensure that the DE1-SoC board is powered off, and then insert the Linux microSD card into the microSD card
slot. Before turning on the board, ensure that the MODE SELECT (MSEL) switches found on the underside of the
board match the settings shown in Figure 3. These settings configure the Cyclone V SoC chip so as to allow the
ARM processor to program the FPGA. It is necessary to have these settings because our Linux image programs the
FPGA as part of its boot-up process. We should note that making this change to the MSEL switches does not prevent

Intel Corporation - FPGA University Program
February 2017

3

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

the FPGA from being programmed using other methods, such as via the Intel Quartus Prime Programming tool.

Figure 3. Configuring the MSEL switches of the DE1-SoC board.

2.5 Connecting the DE1-SoC Board to the Host Computer

Before booting Linux, you should first connect the DE1-SoC board to your host computer. There are two main
methods of communicating between the DE1-SoC board and the host computer: using a USB cable to connect to a
Linux command-line prompt, or using a network to connect to a Linux graphical user interface (GUI). Each method
is described below.

2.6 Connecting to the Host Computer using a USB Cable

The DE1-SoC-UP Linux image has been configured to send and receive text via the Cyclone V HPS’s UART. This
UART is a device that facilitates serial communication of characters; it is used to send/receive characters to/from
the standard Linux streams stdout, stdin, and stderr between the host computer and the DE1-SoC-UP Linux. On
the DE1-SoC board, the HPS’s UART is attached to a UART-to-USB chip that can be connected to a host computer
by using a USB cable. On the host computer, we can use a terminal program to display this text. Various terminal
programs are available via the internet. For this tutorial, we will be using the free-to-use tool Putty which is
available for both Windows and Linux.

In the following discussion we assume that you have installed Putty on your host computer. If you choose to install
and use a different terminal program, then the instructions below would need to be modified accordingly. Connect
the UART-to-USB port of the DE1-SoC board to your host computer using the mini-USB cable supplied with the
board. The UART-to-USB connector can be found immediately next to the microSD card slot. If this is your first
time connecting to the UART-to-USB chip, you may have to install its device driver on your host computer. If your
host computer’s operating system does not automatically install the driver, then you can search for it on the Internet.
An appropriate search string is FT232R UART USB Driver, which should locate the driver on a website called
ftdichip.com.

2.6.1 Using a Windows Host Computer

On a Windows host computer serial communication devices such as the UART-to-USB are treated as COM ports.
Since a host computer may have multiple COM ports, each one is assigned a unique identifying number. The
number assigned can be determined by viewing the list of COM ports in Device Manager. Figure 4 shows the

4 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Device Manager’s list of available COM ports on one particular computer. Here, there is only one COM port (the
UART-to-USB) which is assigned the number 3 (COM3). If more COM ports were listed, then the UART-to-USB
port could be determined by disconnecting and reconnecting the cable to see which COM port disappears, then
reappears, in the list.

Figure 4. Determining the COM port of the UART-to-USB connection in Device Manager.

2.6.2 Using a Linux Host Computer

On a Linux host computer serial communication devices such as the UART-to-USB are treated as teletype (TTY)
devices. Since there can be multiple TTY devices connected to the host computer, each TTY device is assigned
a unique identifier. The name assigned to your UART-to-USB connection can be determined by running the com-
mand dmesg | grep tty as shown in Figure 5. In the figure, you can see that the UART-to-USB chip (the
manufacturer’s name for this device is FTDI USB Serial Device converter) has been assigned the name ttyUSB0.

Figure 5. Determining the TTY device that corresponds to the UART-to-USB connection.

Intel Corporation - FPGA University Program
February 2017

5

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

2.6.3 Using Putty

Start the Putty program. Now that the serial device (COM port or TTY device) corresponding to the UART-to-USB
connection is known, Putty can be configured to connect to it. Figure 6 shows the main window of Putty. In this
window, the Connection type has been set to Serial, and COM3 has been specified in the Serial line field.

Figure 6. Putty’s main window.

Some additional details about the UART-to-USB connection must be entered by selecting the Serial panel in the
Category box on the left side of the window. The Serial panel is shown in Figure 7. These settings must match
the configuration of the UART. As shown in the figure set the speed (baud rate) to 115200 bits per second, data bits
to 8, stop bits to 1, and parity and flow control to none.

Once all of the serial-line settings have been entered, press Open to start the Terminal. Now, turn on the power to
the DE1-SoC board. You should now see a stream of text in the Putty terminal that shows the status of the Linux
boot process, as displayed in Figures 8 and 9. Once Linux has finished booting, you will be logged in to the Linux
command line interface (CLI) as the root user. Being logged in as root means that you that have administrator-level
privileges, which allow you to modify settings and execute privileged programs.

In the Terminal window press Enter on your keyboard to see that the CLI responds. Type a Linux command such
as ls, which shows a listing of directories and files.

6 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Figure 7. Putty’s configuration window for serial communication settings.

Figure 8. Putty terminal displaying text output as the Linux kernel boots.

Intel Corporation - FPGA University Program
February 2017

7

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Figure 9. The Linux command line prompt showing the root (’#’) logon.

2.7 Connecting to the Host Computer using a Network

The DE1-SoC-UP Linux image has been configured to include a graphical user interface (GUI), and a virtual network
computing (VNC) server. The VNC server transmits a copy of the GUI to a network port, which allows the host
computer to use the GUI via a network connection to the DE1-SoC board. The network port used by the VNC server
is 5901, and the password for the VNC server is set to password.

There are two ways to establish a network connection to the DE1-SoC board: using an Ethernet cable, and using a
WiFi adapter. Both methods are discussed below.

2.7.1 Connection using an Ethernet Cable

To establish a network connection to your host computer using an Ethernet cable, plug one end of the Ethernet
cable into the RJ45 port on the DE1-SoC board. The other end of this cable can either be plugged directly into
an Ethernet port on the host computer, or plugged into an Ethernet switch on the same network as the host com-
puter. The DE1-SoC is set up to use either of two IPv4 network addresses via Ethernet: 192.168.0.123 and
192.168.1.123. For the host computer to connect to the DE1-SoC board, the host computer’s network ad-
dress must be on the same subnet. This means that the host computer’s network address must be of the form
192.168.0.xxx or 192.168.1.xxx. The steps required to complete the Ethernet connection to the VNC server
are described below.

You first need to determine your host computer’s IP address. If you are using Windows on the host computer, open
a Command (CMD) prompt window and execute ipconfig. In the output produced by this command look for the
computer’s IPv4 Address. If you are running Linux on your host computer, open a Terminal window and run the
command ifconfig. In the output look for an inet addr that is associated with an Ethernet port, such as eth0.

8 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

If your host address is on subnet 192.168.0 or 192.168.1, then skip to Section 2.7.3. Otherwise, you need to
change either the IP address of your host computer, or the IP address of the DE1-SoC board. If your host computer
is currently connected to the Internet, and you wish to maintain this Internet connection, then the best option is to
change the IP address of the DE1-SoC board so that it uses the same subnet as the host computer. But if you do not
need to access the Internet on the host computer, then you may wish to instead change the IP address of your host
computer to use the same subnet as the DE1-SoC board.

The procedures for changing the IP address of the host computer or DE1-SoC board are described below.

Changing the IP address of your Host Computer

Note that if you are currently connected to the Internet on your host computer, and wish to maintain this connection,
then you probably do not want to change your host computer’s IP address. This is because your host computer’s IP
address would be set to allow it to communicate with your Internet modem or router. But if you are not using the
Internet on the host computer, then the procedure below may be used to change its IP address.

If you are using Windows, the IP address of the host computer can be changed by using the Windows Control Panel.
In the Control Panel, open the Network and Sharing Center item. Click on Change adapter settings, then right-click
on your Ethernet adapter and open the Properties dialog. Highlight the Internet Protocol Version 4 (TCP/IPv4)
item and click Properties. In the General tab click Use the following IP address. In the IP address field enter
192.168.0.xxx (or 192.168.1.xxx), where xxx is a number of your choosing (that is not already being used in
the subnet). In the Subnet mask field enter 255.255.255.0. Leave the Default gateway field blank.

If you are using Linux on the host computer, the IP address can be changed by using the ifconfig command.
If your Ethernet adapter were called eth0, then the command would be ifconfig eth0 192.168.0.xxx (or
192.168.1.xxx), where xxx is a number of your choosing (that is not already being used in the subnet). If your
Ethernet adapter is not called eth0, then replace this field with the actual name of your Ethernet port.

Once you have established the correct IP address, you can connect to the VNC server as described in Section 2.7.3.

Changing the IP address of the DE1-SoC Board

To change the IP address of the DE1-SoC board you have to first connect your host computer to the board via a
USB cable, as described in section 2.6. Then, using a Terminal window connected to Linux on the DE1-SoC board
execute the ifconfig command. For example, if your host computer’s IP address were 169.254.245.156, then
you would use the command ifconfig eth0 169.254.245.xxx, where xxx is a number of your choosing
(that is not already being used in the subnet).

Once you have established the correct IP address, you can connect to the VNC server as described in Section 2.7.3.

2.7.2 Connecting to the Host Computer using a WiFi Adapter

To make a network connection to the DE1-SoC board using a WiFi adapter, you first have to connect your host
computer to the board via a USB cable, as described in section 2.6. Then, you can use a Terminal window connected
to Linux on the DE1-SoC board to connect to the desired WiFi network.

Intel Corporation - FPGA University Program
February 2017

9

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

The DE1-SoC-UP-Linux supports a variety of USB WiFi adapters. At the time of writing this tutorial WiFi adapters
supported by Linux kernel version 3.18 have been tested. Other WiFi adapters may also be usable, but drivers may
need to be manually installed.

Plug your WiFi adapter into a USB port on the DE1-SoC board. To join a desired WiFi network, you can run the
following script: connect_wpa <ssid> <password>. This script can be found in the directory /home/-
root/misc in the DE1-SoC-UP-Linux filesystem. The DE1-SoC board should become connected to your WiFi net-
work after a few moments.

Instead of using the connect_wpa script, it is possible to run the Linux commands included in the script manually.
First, using the Terminal window connected to Linux on the DE1-SoC board, create an ASCII text file in a directory
of your choosing. Give the file a name ending in .conf, such as mywifi.conf. This file has to contain the lines

network={
ssid="<ssid>"
psk="<password>"

}

Note that the first character on each of the second and third lines is a tab character. Now, run the following Linux
commands:

stop network-manager
wpa_supplicant -B -iwlan0 -c./mywifi.conf -Dnl80211
dhclient wlan0

Note that the wireless interface on your DE1-SoC board might not be wlan0. To determine the correct name, use the
Linux command iwconfig. You can check the IP address assigned by the WiFi router using the Linux ifconfig
command. Then, you can then use this IP address, as described in Section 2.7.3, to connect to the VNC server from
a host computer on the same WiFi network.

2.7.3 Using the VNC Server

After you have set up a network connection between your host computer and the DE1-SoC board, you can use a
VNC Viewer application on your host computer to connect to the Linux GUI. For this tutorial we will be using the
RealVNC Viewer that is available for no charge for Windows computers. For Linux host computers you can use a
VNC Viewer such as the Remmina application that is included with some Linux distributions.

Figure 10 shows the opening dialog of the RealVNC Viewer application. The VNC Server address is specified
assuming that the default IP address 192.168.0.123 is being used, and port 5901 is specified as required.
Clicking on the Connect button opens another dialog that prompts for the password. Providing the password (which
is just set to password in our case) opens the RealVNC window shown in Figure 11. In the figure we have opened
the Terminal command prompt window inside the VNC Viewer and typed the Linux command pwd.

The VNC Server on the DE1-SoC Computer supports four different screen sizes. Using a Terminal command
prompt window in the VNC Viewer the screen size can be changed with the xrandr command. You can type
xrandr -s 0 to select the smallest screen size, and xrandr -s 3 to choose the largest size.

10 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Figure 10. The RealVNC opening dialog.

Figure 11. The main RealVNC window.

The DE1-SoC-UP Linux image includes many application programs. It provides several text editors, including gedit,
Emacs, vim, and gvim. It also includes the Code::Blocks integrated development environment. This tool provides a
source-level debugger that can be used to develop applications programs. In Appendix A we provide a short tutorial
that shows how to use Code::Blocks to develop C programs that run on the ARM processor under Linux.

Intel Corporation - FPGA University Program
February 2017

11

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

2.7.4 Transferring Files to/from the Host Computer

The DE1-SoC-UP Linux image includes an FTP Server that can be used to transfer files between the host computer
and the DE1-SoC Computer. The FTP server uses the secure FTP (SFTP) protocol and uses Port 22 of the DE1-SoC
network connection. The login Username for the FTP Server is root, and the password is password. An easy-to-use
FTP client for both Windows and Linux host computers is FileZilla, available from https://filezilla-project.org/.

2.7.5 Accessing the Internet

After connecting the DE1-SoC Computer to a network, it is possible to provide Internet access to Linux applications.
For example, the DE1-SoC-UP Linux image includes the Mozilla Firefox browser, which can be used to browse web
pages. If you are connected to the network using WiFi as discussed in Section 2.7.2, then the Internet access
provided by your WiFi router is already enabled. But if you have connected using an Ethernet cable, then the
following commands have to be used to enable the Internet access provided by your router:

ifconfig eth0 0.0.0.0 0.0.0.0
dhclient eth0

These commands set up the eth0 port as a DHCP client of the router. The eth0 port will obtain an automatically-
assigned IP address that allows Internet access. You can use this IP address to connect to the VNC server as described
in Section 2.7.3, and can run Linux applications that access the Internet.

3 Developing Linux Programs for the DE1-SoC Board

In this section you will learn how to develop programs that can run under Linux on the DE1-SoC board. There are
two options for developing a Linux program for the DE1-SoC board. The first is to write and compile code using
either the command-line or GUI (VNC) interface of the Linux running on the board. This approach is called native
compilation, and is described in Section 3.1. Native compilation is the primary method used in this tutorial. The
second option is to write and compile your program on a host computer, and then transfer the resulting executable
onto the Linux filesystem (microSD card). This approach is called cross compilation, and is described briefly in
Appendix C.

3.1 Native Compilation on the DE1-SoC Board

When a program is compiled on a system to run on the same architecture as that of the system itself, the process is
called native compilation. In this section, we will be natively compiling a program through the Linux command-line
interface, using its built-in compilation toolchain.

To demonstrate native compilation, we will compile a simple "hello world" program. The code for this program is
shown in Figure 12. You can also find the code in /home/root/helloworld/helloworld.c of the Linux filesystem.

12 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

1 #include <stdio.h>
2
3 int main(void){
4
5 printf("Hello World!\n");
6
7 return 0;
8 }

Figure 12. The helloworld program

You can compile code using the Linux command-line interface. If you are using a USB cable to connect to the DE1-
SoC board, as discussed in Section 2.6, then use the Putty tool to open a Terminal window. If you are using the VNC
Viewer, as described in Section 2.7, then open a Terminal window in the GUI. In your Terminal window change
the working directory to /home/root/helloworld. Compile the program using the command gcc helloworld.c
-o helloworld, as shown in Figure 13. The gcc command invokes the GNU C Compiler, which is an open-
source compiler that is widely used to compile Linux programs. In our gcc command, we supply two arguments.
The first is the source-code file, helloworld.c. The second is -o helloworld which tells the compiler to
output an executable file named helloworld. Once the compilation is complete, we can run the program by typing
./helloworld. The program outputs the message "Hello World!" then exits, as shown in Figure 13.

Figure 13. Compiling and executing the helloworld program through the command line.

3.2 Accessing Hardware Devices in the FPGA from a Linux Program

Programs running on the ARM processor in the DE1-SoC-UP-Linux OS can access hardware peripherals that are
implemented in the FPGA. The ARM processor can access the FPGA by using either the HPS-to-FPGA bridge or
the Lightweight HPS-to-FPGA bridge. These bridges are mapped to regions in the ARM memory space. When an
FPGA-side component (such as an IP core) is connected to one of these bridges, the component’s memory-mapped
registers are available for reading and writing by the ARM processor within the bridge’s memory region.

If we were developing a “bare metal” ARM program (a program that does not run on top of an operating system), then

Intel Corporation - FPGA University Program
February 2017

13

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

accessing peripherals in the FPGA that are mapped to a memory region would be done by simply reading from, or
writing to, the appropriate memory address. Examples of software programs that access memory-mapped peripherals
in the FPGA can be found on the Intel FPGA University Program website in the document Using the DE1-SoC
Computer with ARM. But when programs are being run under Linux it is not as straightforward to access memory-
mapped I/O devices. This is because Linux uses a virtual-memory system, and therefore application programs do
not have direct access to the processor’s physical address space.

To access physical memory addresses from a program running under Linux, you have to call the Linux kernel
function mmap and access the system memory device file /dev/mem. The mmap function, which stands for memory
map, maps a file into virtual memory. You could, as an example, use mmap to map a text file into memory and then
access the characters in the text file by reading the virtual memory address span to which the file has been mapped.
The system memory device file, /dev/mem, is a special file that represents the physical memory of the computer
system. An access into this file at some offset is equivalent to accessing physical memory at the offset address.
By using mmap to map the /dev/mem file into virtual memory, we can map physical addresses to virtual addresses,
allowing programs to access physical addresses. In the following section, we will examine a sample Linux program
that uses mmap and /dev/mem to access the Lightweight HPS-to-FPGA (lwhps2fpga) bridge’s memory span and
communicate with an IP core in the FPGA.

3.3 Example Program that uses an FPGA Hardware Device

In this section, we describe an example of code in the C language that uses a hardware device in the FPGA. The
application program alters the state of the red LEDs on the DE1-SoC board. Recall that the DE1-SoC-UP Linux
distribution automatically downloads the circuit that implements the DE1-SoC Computer system into the FPGA
during the boot process. The DE1-SoC Computer includes a parallel port that is connected to the red LEDs on the
board. This parallel port is attached to the lwhps2fpga bridge, which is mapped in the ARM memory space starting
at address 0xFF200000. A number of I/O ports are mapped to the bridge’s address space, at different offsets, and
the physical address of any port is given by 0xFF200000 + offset. The offset of the red LED port is 0, leading to
the address 0xFF200000 + 0x0 = 0xFF200000. The LED parallel port register interface consists of a single
register, the data register, which can be read to determine the current state of the LEDs, and written to alter the state.
A diagram showing how the red LEDs are connected to the parallel port is shown in Figure 14.

The code for the application program is shown in Figure 15. Each time this program is executed, the value displayed
on the red LEDs is incremented by one. The example code can be found on the Linux microSD card in the file
/home/root/increment_leds/increment_leds.c. You can compile the code using a command such as gcc -Wall
increment_leds.c -o increment_leds. Some important lines in the code are described below.

0xFF200000

LEDR0LEDR9

Address

031 910 . . .Unused Data register

Figure 14. The LED parallel port.

14 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

1 #include <stdio.h>
2 #include <fcntl.h>
3 #include <sys/mman.h>
4 #include "../address_map_arm.h"
5
6 /* Prototypes for functions used to access physical memory addresses */
7 int open_physical (int);
8 void * map_physical (int, unsigned int, unsigned int);
9 void close_physical (int);

10 int unmap_physical (void *, unsigned int);
11
12 /* This program increments the contents of the red LED parallel port */
13 int main(void)
14 {
15 volatile int * LEDR_ptr; // virtual address pointer to red LEDs
16 int fd = -1; // used to open /dev/mem
17 void *LW_virtual; // physical addresses for light-weight bridge
18
19 // Create virtual memory access to the FPGA light-weight bridge
20 if ((fd = open_physical (fd)) == -1)
21 return (-1);
22 if ((LW_virtual = map_physical (fd, LW_BRIDGE_BASE, LW_BRIDGE_SPAN)) ==

NULL)
23 return (-1);
24
25 // Set virtual address pointer to I/O port
26 LEDR_ptr = (unsigned int *) (LW_virtual + LEDR_BASE);
27 *LEDR_ptr = *LEDR_ptr + 1; // Add 1 to the I/O register
28
29 unmap_physical (LW_virtual, LW_BRIDGE_SPAN);
30 close_physical (fd);
31 return 0;
32 }

Figure 15. C-code for the increment_leds program

• Lines 2-3 include the fcntl.h and sys/mman.h header files, which are needed to use the /dev/mem device
file and the mmap and munmap kernel functions.

• Line 4 includes the file address_map_arm.h, which specifies address offsets for all of the FPGA I/O
devices that are implemented in the DE1-SoC Computer. The contents of this file are listed in Appendix B.

• Lines 7-10 provide prototype declarations for functions that are used to access physical memory. These
functions are listed in Figure 16. The functions open_physical and close_physical are used to open
and close the /dev/mem device file. The function map_physical calls the mmap kernel function to create a
physical-to-virtual address mapping for I/O devices, and the unmap_physical closes this mapping. These
four functions can be used in any program that needs to access physical memory addresses, along with the
address information given in Appendix B.

Intel Corporation - FPGA University Program
February 2017

15

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

• Line 20 opens the file /dev/mem
• Line 22 maps a part of the /dev/mem file into memory. It maps a portion that starts at the base address of

lwhps2fpga, specified in the code as LW_BRIDGE_BASE, and spans LW_BRIDGE_SPAN bytes. Appendix B
gives the values of LW_BRIDGE_BASE and LW_BRIDGE_SPAN. The LW_virtual variable will be set to
an address that maps to the bottom of the requested physical address space (LW_BRIDGE_BASE). This means
that an access to LW_virtual + offset will access the physical address 0xFF200000 + offset.

• Line 26 calculates the virtual address that maps to the LED port. This is done by adding the address offset of
the port, LEDR_BASE, to LW_virtual.

• Line 27 reads the data register of the LED port, increments the value by one, then writes the incremented
value back to the register.

• Lines 29-30 unmap and close the /dev/mem file

1 /* Open /dev/mem to give access to physical addresses */
2 int open_physical (int fd)
3 {
4 if (fd == -1) // check if already open
5 if ((fd = open("/dev/mem", (O_RDWR | O_SYNC))) == -1)
6 {
7 printf ("ERROR: could not open \"/dev/mem\"...\n");
8 return (-1);
9 }

10 return fd;
11 }
12
13 /* Close /dev/mem to give access to physical addresses */
14 void close_physical (int fd)
15 {
16 close (fd);
17 }
18
19 /* Establish a virtual address mapping for the physical addresses starting
20 * at base and extending by span bytes */
21 void* map_physical(int fd, unsigned int base, unsigned int span)
22 {
23 void *virtual_base;
24 // Get a mapping from physical addresses to virtual addresses
25 virtual_base = mmap (NULL, span, (PROT_READ | PROT_WRITE), MAP_SHARED,

fd, base);
26 if (virtual_base == MAP_FAILED)
27 {
28 printf ("ERROR: mmap() failed...\n");
29 close (fd);
30 return (NULL);
31 }
32 return virtual_base;
33 }

Figure 16. Functions for managing physical memory addresses (Part a).

16 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

1 /* Close the previously-opened virtual address mapping */
2 int unmap_physical(void * virtual_base, unsigned int span)
3 {
4 if (munmap (virtual_base, span) != 0)
5 {
6 printf ("ERROR: munmap() failed...\n");
7 return (-1);
8 }
9 return 0;

10 }

Figure 16. Functions for managing physical memory addresses (Part b).

3.4 Device Drivers

Device drivers in Linux are software programs that provide an interface to hardware devices. There are two types
of device drivers: code that is pre-compiled and distributed with the Linux kernel, and code that is created as a
module that can be added to the kernel at runtime. We provide an example of a kernel module in this section; making
pre-compiled device drivers that are distributed with the Linux kernel is beyond the scope of this tutorial.

The kernel module described in this section uses the pushbutton KEY port in the DE1-SoC Computer. To make the
example more interesting, we use ARM processor interrupts to handle KEY presses. A diagram of the pushbutton
KEY port is shown in Figure 17. There is a Data register that reflects which KEY(s) are pressed at a given time. For
example, if KEY0 is currently being pressed, then bit 0 of the data register will be 1, otherwise 0. The Edgecapture
register can be used to check if a KEY has been pressed since last examined, even if it has since been released. If,
for example, KEY0 is pressed, then bit 0 of the Edgecapture register becomes 1. This bit remains 1 even if KEY0

is released. To reset the bit to 0, the ARM processor has to explicitly write the value 1 into this bit-position of the
Edgecapture register. The KEY port can send interrupts to the ARM processor. Interrupts can be enabled for each
KEY separately, using the Interruptmask register. An interrupt for a KEY is enabled by setting the corresponding bit
in the Interruptmask register to 1.

Address 02 14 331 30 . . .

0xFF200050

0xFF200058

0xFF20005C

Unused

KEY3-0

Edge bits

Mask bits

Unused

Unused

Unused

Data register

Interruptmask register

Edgecapture register

Unused

Figure 17. The pushbutton KEY parallel port.

Linux allows interrupts to be used only by software code that is part of the kernel. The ARM processor of the Cyclone
V device contains a Generic Interupt Controller (GIC) which can accommodate 256 interrupt request (IRQ) lines

Intel Corporation - FPGA University Program
February 2017

17

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

IRQ0 to IRQ255. A total of 64 of the lines (IRQ72 - IRQ135) are reserved for interrupts originating from hardware
devices implemented inside the FPGA. In the DE1-SoC Computer the pushbutton KEY port is connected to interrupt
line IRQ73. This means that our kernel module needs to register an interrupt handler that will respond to IRQ73.

Linux contains drivers for the GIC, allowing us to use a high-level interface provided by the OS to register an inter-
rupt handler. The Linux header file linux/interrupt.h provides this interface, among which is the function
request_irq(...). This function takes an integer argument irq and a function pointer argument handler,
and registers the function as the handler for IRQ number irq.

3.4.1 The Pushbutton Interrupt Handler Kernel Module

The code for our kernel module is shown in Figure 18. Lines 1-5 in this code include various header files that are
needed for our kernel module. Line 6 include a file that specifies addresses, and line 7 includes a file that lists all
FPGA interrupts in the DE1-SoC Computer. These files are provided in Appendix B. Kernel modules, unlike regular
C programs, do not have a main function. Instead, kernel modules have an init function which is executed when
the module is inserted into the kernel, and an exit function which is executed if the module is removed from the
kernel. These functions are specified using the macros module_init(...) and module_exit(...).

The init function in our module is initialize_pushbutton_handler(void). In this function, line 23
makes a system call to the function ioremap_cache(base_address, span), which is part of the Linux
kernel. This function allows the kernel module to access physical memory addresses. The ioremap_cache
function has a similar purpose as the mmap function that we discussed in Section 3.3. Kernel modules are not
allowed to call the mmap function, and instead have to use the ioremap_cache function. This function returns a
virtual address that can be used to access physical memory starting at base_address and extending span bytes.

Line 25 of the code sets up a virtual address pointer for the LED parallel port, and line 26 initializes the value of this
port to 0x200, which turns on the leftmost LED (as a visual indication that the module has been inserted). The code
then configures the pushbutton port so that it will generate an interrupt when a button is pressed. Finally, line 33 calls
request_irq(...) to register our irq handler irq_handler(...) to handle pushbutton interrupts. Once
registered, irq_handler(...) is executed whenever the pushbutton port generates an interrupt. The handler
does two things. First, it increments the value displayed on the LEDs to provide visual feedback that the interrupt
has been handled. Second, it clears the interrupt in the KEY port by writing to the Edgecapture register.

In this example, irq_handler(...) serves as a trivial example of an interrupt handler. A “real” driver for
a device would do something more useful like transfer data to and from buffers, check the status of devices, and
the like. A device driver module that does not use interrupts would still look similar to the code in Figure 18,
but without the interrupt-specific code like irq_handler and free_irq. The exit function in our module
is cleanup_pushbutton_handler(void). It sets LEDs to 0x0, turning them off, and de-registers the
pushbutton irq handler by calling the free_irq(...) function.

18 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/init.h>
4 #include <linux/interrupt.h>
5 #include <asm/io.h>
6 #include "../address_map_arm.h"
7 #include "../interrupt_ID.h"
8
9 void * LW_virtual; // Lightweight bridge base address

10 volatile int *LEDR_ptr, *KEY_ptr; // virtual addresses
11
12 irq_handler_t irq_handler(int irq, void *dev_id, struct pt_regs *regs)
13 {
14 *LEDR_ptr = *LEDR_ptr + 1;
15 // Clear the Edgecapture register (clears current interrupt)
16 *(KEY_ptr + 3) = 0xF;
17 return (irq_handler_t) IRQ_HANDLED;
18 }
19 static int __init initialize_pushbutton_handler(void)
20 {
21 int value;
22 // generate a virtual address for the FPGA lightweight bridge
23 LW_virtual = ioremap_nocache (LW_BRIDGE_BASE, LW_BRIDGE_SPAN);
24
25 LEDR_ptr = LW_virtual + LEDR_BASE; // virtual address for LEDR port
26 *LEDR_ptr = 0x200; // turn on the leftmost light
27
28 KEY_ptr = LW_virtual + KEY_BASE; // virtual address for KEY port
29 *(KEY_ptr + 3) = 0xF; // Clear the Edgecapture register
30 *(KEY_ptr + 2) = 0xF; // Enable IRQ generation for the 4 buttons
31
32 // Register the interrupt handler.
33 value = request_irq (KEYS_IRQ, (irq_handler_t) irq_handler, IRQF_SHARED,
34 "pushbutton_irq_handler", (void *) (irq_handler));
35 return value;
36 }
37 static void __exit cleanup_pushbutton_handler(void)
38 {
39 *LEDR_ptr = 0; // Turn off LEDs and de-register irq handler
40 free_irq (KEYS_IRQ, (void*) irq_handler);
41 }
42 module_init(initialize_pushbutton_handler);
43 module_exit(cleanup_pushbutton_handler);

Figure 18. C-code for the pushbutton interrupt handler kernel module

Intel Corporation - FPGA University Program
February 2017

19

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

3.4.2 Compiling the Kernel Module

The kernel module source code can be found in the directory /home/root/pushbutton_irq_handler/. To compile the
module, use the included Makefile by running the Linux command make. The contents of the Makefile are shown
in Figure 19. The first line, obj-m += <module_name>.o, specifies the name of the kernel module that is to
be built (our kernel module will as a result be named pushbutton_irq_handler). This line also tells the build system
to look for the kernel module code in <module_name>.c, and generate the kernel object file <module_name>.ko at
the end of the compilation.

The all target, which is the default target when make is run, calls the command make -C /lib/modules/-
$(shell uname -r)/build M=$(PWD) modules. The -C argument tells the make program to change
the working directory to /lib/modules/$(shell uname -r)/build, which is the directory containing the source code and
configuration files of the currently running Linux kernel. In this directory is a collection of makefiles called the
Linux Kernel Build System (Kbuild) that our make command leverages to build our kernel module. The remaining
arguments M=$(PWD) and modules are used by Kbuild. The argument M=$(PWD) tells Kbuild the location of
our kernel module source code, and modules tells Kbuild to build a kernel module.

The end result of the make command is the generation of the pushbutton_irq_handler.ko kernel module, which is
placed in the directory pointed to by the M= argument.

1 obj-m += pushbutton_irq_handler.o
2
3 all:
4 make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules
5
6 clean:
7 make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

Figure 19. Kernel module makefile

3.4.3 Running the Kernel Module

A kernel module is executed by inserting it into the Linux kernel using the command insmod <module_name.ko>.
Insert the kernel module you compiled above by using the command insmod pushbutton_irq_handler.ko,
as shown in Figure 20. You can use the command lsmod to confirm that your module has been loaded. Once the
module is inserted, you should see that the leftmost red LED on the DE1-SoC board is turned on. Now press any of
the four push buttons to generate an interrupt on IRQ73, and confirm that the value displayed on the LEDs increments
by one.

To stop a kernel module, you can remove it from the kernel by using the command rmmod <module_name>.
Remove your module using the command rmmod pushbutton_irq_handler. You can use the lsmod com-
mand to confirm that the pushbutton_irq_handler module has been removed.

20 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Figure 20. Inserting and removing the kernel module

Intel Corporation - FPGA University Program
February 2017

21

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Appendix A Using Code::Blocks

If you are using a network connection to your DE1-SoC Computer, as described in Section 2.7, then you can make
use of the Code::Blocks tool for developing and debugging application programs. In this appendix we provide
a simple example that shows how to create a Code::Blocks project for the DE1-SoC Computer. We will show
how to build a project using the increment_leds example that we discussed in Section 3.3.

Open the Code::Blocks tool by clicking on its icon, which looks like four colored cubes. The main window of
Code::Blocks is displayed in Figure 21. In this window, click on Create a new project to begin using
the tool. In the window that opens click on the Empty project item, and then click on the Go button.

In the Empty project dialog, shown in Figure 22, type a title for the project, such as increment_leds. Use the
... button to navigate to, and select, the folder that contains the increment_leds source code. Give the project a
name like increment_leds. Make sure that the Resulting filename item shows the proper name and path to
the project. Click on the Next button to reach a second Empty project dialog. Then, click Finish to return
to the main Code::Blocks window.

Figure 21. The main Code::Blocks window.

As indicated in Figure 23 right-click the increment_leds name under Workspace, and then select Add files....
Select the increment_leds.c source-code file, as illustrated in Figure 24, and then click the Open button. In the dialog
that opens, illustrated in Figure 25, select OK. Now you can open the increment_leds item under Workspace,
then open the Sources sub-menu, and double-click to open the increment_leds.c file inside the Code::Blocks
window. You can change the size of the displayed text by holding down the CTRL key and rolling the mouse wheel.

22 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Figure 22. The Empty project dialog.

Figure 23. Adding source-code files to the project.

Intel Corporation - FPGA University Program
February 2017

23

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Click to the right of the line of code that calls the function open_physical, as shown in Figure 26, and set a
breakpoint. The breakpoint is indicated by a red circle.

Now start the debugger by selecting the command Debug | Start, as indicated in in Figure 27. (Note that the
main menu commands for Code::Blocks are provided at the top of the Linux desktop, and not in the border of
the Code::Blocks window.) The debugger will start running the program and it will stop when the code reaches
the breakpoint. Figure 28 shows the debugger window after reaching the breakpoint. If the CPU Registers
window is not visible, it can be opened by selecting the command Debug | Debugging windows | CPU
Registers. This window shows the current contents of the ARM processor general-purpose registers.

The debugger can display the values of variables used in your program, as illustrated in Figure 29. Expand the
Local variables item in the Watcheswindow to see the variables that currently exist in the program. Execute
a few more lines of code until the value of the LEDR_ptr variable is initialized by the program, as displayed in the
figure. To execute a line of code use the command Debug | Next line. This command is available in the main
Debug menu, via the short-cut keyboard key F7, or by clicking on its icon in the Debug toolbar. If this toolbar is not
open when the debugger is running, it can be opened by using the command View | Toolbars | Debugger.

More complete information about using Code::Blocks can be found by searching for documentation and tutorials
on the Internet.

Figure 24. Selecting the increment_leds.c file.

24 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Figure 25. Selecting build targets.

Figure 26. Setting a breakpoint.

Intel Corporation - FPGA University Program
February 2017

25

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Figure 27. Starting the debugger.

Figure 28. The debugging window.

26 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Figure 29. Displaying the values of variables.

Intel Corporation - FPGA University Program
February 2017

27

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Appendix B Include Files

Figure 30 shows the contents of the include file address_map_arm.h that is discussed in Section 3.3. This file lists
memory and FPGA I/O addresses in the DE1-SoC Computer.

/* Memory */
#define DDR_BASE 0x00000000
#define DDR_SPAN 0x3FFFFFFF
#define A9_ONCHIP_BASE 0xFFFF0000
#define A9_ONCHIP_SPAN 0x0000FFFF
#define SDRAM_BASE 0xC0000000
#define SDRAM_SPAN 0x03FFFFFF
#define FPGA_ONCHIP_BASE 0xC8000000
#define FPGA_ONCHIP_SPAN 0x0003FFFF
#define FPGA_CHAR_BASE 0xC9000000
#define FPGA_CHAR_SPAN 0x00001FFF

/* Cyclone V FPGA devices */
#define LW_BRIDGE_BASE 0xFF200000

#define LEDR_BASE 0x00000000
#define HEX3_HEX0_BASE 0x00000020
#define HEX5_HEX4_BASE 0x00000030
#define SW_BASE 0x00000040
#define KEY_BASE 0x00000050
#define JP1_BASE 0x00000060
#define JP2_BASE 0x00000070
#define PS2_BASE 0x00000100
#define PS2_DUAL_BASE 0x00000108
#define JTAG_UART_BASE 0x00001000
#define JTAG_UART_2_BASE 0x00001008
#define IrDA_BASE 0x00001020
#define TIMER0_BASE 0x00002000
#define TIMER1_BASE 0x00002020
#define AV_CONFIG_BASE 0x00003000
#define PIXEL_BUF_CTRL_BASE 0x00003020
#define CHAR_BUF_CTRL_BASE 0x00003030
#define AUDIO_BASE 0x00003040
#define VIDEO_IN_BASE 0x00003060
#define ADC_BASE 0x00004000

#define LW_BRIDGE_SPAN 0x00005000

Figure 30. The contents of the file address_map_arm.h.

28 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Figure 31 shows the contents of the include file interrupt_ID.h that is discussed in Section 3.4. This file lists the
FPGA interrupt line numbers in the DE1-SoC Computer.

/* FPGA interrupts */
#define TIMER0_IRQ 72
#define KEYS_IRQ 73
#define TIMER1_IRQ 74
#define FPGA_IRQ3 75
#define FPGA_IRQ4 76
#define FPGA_IRQ5 77
#define AUDIO_IRQ 78
#define PS2_IRQ 79
#define JTAG_IRQ 80
#define IrDA_IRQ 81
#define FPGA_IRQ10 82
#define JP1_IRQ 83
#define JP2_IRQ 84
#define FPGA_IRQ13 85
#define FPGA_IRQ14 86
#define FPGA_IRQ15 87
#define FPGA_IRQ16 88
#define PS2_DUAL_IRQ 89
#define FPGA_IRQ18 90
#define FPGA_IRQ19 91

Figure 31. The contents of the file interrupt_ID.h.

Intel Corporation - FPGA University Program
February 2017

29

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Appendix C Cross Compiling

When a program is compiled for an architecture that is different from that of the system doing the compiling, the
process is called cross-compilation. In this section we will cross-compile a program for the ARM architecture, to run
on the DE1-SoC Computer, from a host computer which typically runs on the x86 architecture. To do this, we will
use a gcc toolchain that comes with the Altera SoC EDS suite. Specifically, we will use the arm-linux-eabihf-
toolchain, which can be found in the /embedded/ds-5/sw/gcc/bin folder in the Altera SoC EDS installation directory.

We will compile a simple helloworld program, the code for which is shown below in Figure 32. Save this code as
helloworld.c in a folder of your choice on your host computer.

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("Hello World!\n");
6
7 return 0;
8 }

Figure 32. The helloworld program

As mentioned, we will be using the arm-linux-gnueabihf- toolchain to compile this program. To start up
a shell that includes this toolchain in its path, run the Embedded Command Shell batch script, located at /altera-
/15.0/embedded/Embedded_Command_Shell.bat. This will open up the shell, similar to what is shown in Figure 33.
Navigate to the folder that contains the helloworld.c file by using the cd command.

Figure 33. The Embedded Command Shell

Compile the code using the command arm-linux-gnueabihf-gcc helloworld.c -o helloworld,
as shown in Figure 34. This command creates the output file helloworld, which is an ARM binary executable that
we can copy to our Linux microSD card and execute on the DE1-SoC Computer. To copy the executable file you
can either use an ftp program as discussed in Section 2.7.4, or you can follow the instructions in Section 3.4.3.

30 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Figure 34. Cross-compiling the helloworld program

In addition to arm-linux-gnueabihf-gcc, the arm-linux-gnueabihf- toolchain contains the typical
suite of gnu compilation tools such as the C++ compiler (g++), linker (ld), assembler (as), object dump (objdump),
and object copy (objcopy).

Transferring Files to the Linux Filesystem

You may wish to copy over files (such as a program that you want to run on the board) from your host PC to the
Linux filesystem. The following sections describe how to do so from Windows and Linux host computers. Note that
the host computer must have a microSD card reader.

From a Windows Host PC

When the microSD card is plugged into a Windows host PC, the FAT32 partition of the microSD card is detected.
Any files that you move to this partition can be found in the /media/fat_partition/ directory of the Linux filesystem
once Linux boots on the DE1-SoC board. Note that this partition will by default contain the files soc_system.rbf
(an intermediate FPGA programming file used during boot up), socfpga.dtb (the device tree file), and uImage (the
Linux kernel). Under no circumstances should you delete these files, as they are crucial components required to boot
Linux.

From a Linux Host PC

When the microSD card is plugged into a Linux host PC, two partitions of the microSD card are detected. The first
is the Linux filesystem partition, where you have access to any directory in the Linux directory tree. The second
is the FAT32 partition, which gets mounted to /media/fat_partition/ in the Linux directory tree. You can copy over
files from your host PC to either of these partitions. Note that the FAT32 partition will by default contain the files
soc_system.rbf (an intermediate FPGA programming file used during boot up), socfpga.dtb (the device tree file), and
uImage (the Linux kernel). Under no circumstances should you delete these files, as they are crucial components
required to boot Linux.

Intel Corporation - FPGA University Program
February 2017

31

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Appendix D FPGA Configuration

A special mechanism built into the Cyclone V SoC allows software running on the ARM processor (such as the Linux
OS) to program the FPGA. The DE1-SoC-UP Linux distribution contains drivers for this mechanism, allowing us to
program the FPGA from the CLI. The following sections describe how to use this mechanism.

Creating an RBF Programming File

The FPGA programming mechanism accepts an input FPGA bitstream in the Raw Binary File (.rbf) file format. This
means that once you compile your circuit using Quartus, which outputs the FPGA bitstream in the SRAM Object File
(.sof) file format, you must convert the .sof file into a .rbf file. This is done using Quartus’s Convert Programming
File tool, and the steps are described below.

1. Launch the Convert Programming File tool by selecting File > Convert Programming Files....

2. Select Raw Binary File (.rbf) as the Programming file type.

3. Select Passive Parallel x16 as the Mode.

4. Specify the destination file name in the File name field.

5. Click and highlight SOF Data then add the .sof file that you wish to convert by clicking Add File....

6. Click and highlight the newly added .sof file in the list, then select Properties. You should see the window
shown in Figure 36. Enable file compression by ticking the checkbox as shown, then press OK.

7. We are now ready to generate the .rbf file. Click Generate. If all goes well, you will see the success message
shown in Figure 37.

8. Finally, we can transfer the .rbf file to the Linux file system using the instructions provided in Section 3.4.3.

Programming the FPGA

The DE1-SoC-UP Linux distribution exposes the FPGA as the device file located at /dev/fpga0. In addition, Linux
provides files in /sys/class/fpga/ and /sys/class/fpga-bridges/ for probing the status and configuring settings of
FPGA-related components. We will make use of these file-based interfaces to program the FPGA, using the steps
described below.

1. Ensure that the MSEL switches on the DE1-SoC have been configured to MSEL[4:0] = 5’b01010.

2. Before we reprogram the FPGA with new components, we must first disable the FPGA-HPS bridges to avoid
unpredictable behavior. Disable them using the following commands:

• echo 0 > /sys/class/fpga-bridge/fpga2hps/enable

• echo 0 > /sys/class/fpga-bridge/hps2fpga/enable

• echo 0 > /sys/class/fpga-bridge/lwhps2fpga/enable

32 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Figure 35. The Convert Programming File Tool.

3. Load the .rbf into the FPGA device using the command:

• dd if=<filename> of=/dev/fpga0 bs=1M

where <filename> is the full path to your .rbf file.

4. Re-enable the required FPGA-HPS bridges using the following commands:

• echo 1 > /sys/class/fpga-bridge/fpga2hps/enable

• echo 1 > /sys/class/fpga-bridge/hps2fpga/enable

• echo 1 > /sys/class/fpga-bridge/lwhps2fpga/enable

Intel Corporation - FPGA University Program
February 2017

33

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Figure 36. Enabling file compression.

Figure 37. The .rbf file successfully generated.

Changing the Default FPGA Programming File

While the DE1-SoC-UP Linux distribution boots, scripts are executed to initialize various Linux components. One
of these scripts, located at /etc/init.d/programfpga, programs the FPGA with the default programming file /home/ro-
ot/DE1_SoC_Computer.rbf. If you open the script using a text editor such as vi, you will see that the script executes
the FPGA programming commands described in Section 3.4.3. To change the default FPGA programming file, edit
the line dd if=<.rbf file> of=/dev/fpga0 bs=1M to specify an .rbf file of your choosing.

34 Intel Corporation - FPGA University Program
February 2017

https://www.altera.com/support/training/university/overview.html

USING LINUX ON THE DE1-SOC For Quartus Prime 17.0

Copyright © Intel Corporation.

Intel Corporation - FPGA University Program
February 2017

35

https://www.altera.com/support/training/university/overview.html

	1 Introduction
	2 Running Linux on the DE1-SoC Board
	2.1 The Cyclone V SoC Device
	2.2 The DE1-SoC-UP Linux Distribution Image
	2.3 Preparing the Linux MicroSD Card
	2.4 Configuring the DE1-SoC Board for use with Linux
	2.5 Connecting the DE1-SoC Board to the Host Computer
	2.6 Connecting to the Host Computer using a USB Cable
	2.6.1 Using a Windows Host Computer
	2.6.2 Using a Linux Host Computer
	2.6.3 Using Putty

	2.7 Connecting to the Host Computer using a Network
	2.7.1 Connection using an Ethernet Cable
	2.7.2 Connecting to the Host Computer using a WiFi Adapter
	2.7.3 Using the VNC Server
	2.7.4 Transferring Files to/from the Host Computer
	2.7.5 Accessing the Internet

	3 Developing Linux Programs for the DE1-SoC Board
	3.1 Native Compilation on the DE1-SoC Board
	3.2 Accessing Hardware Devices in the FPGA from a Linux Program
	3.3 Example Program that uses an FPGA Hardware Device
	3.4 Device Drivers
	3.4.1 The Pushbutton Interrupt Handler Kernel Module
	3.4.2 Compiling the Kernel Module
	3.4.3 Running the Kernel Module

